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The matter power spectrum, P (k), is one of the fundamental quantities in the study of large-
scale structure in cosmology. Here, we study its small-scale asymptotic limit, and show that for
cold dark matter in d spatial dimensions, P (k) has a universal k−d asymptotic scaling with the
wave-number k, for k ≫ knl, where knl denotes the scale at which non-linearities in gravitational
interactions become important. We propose a theoretical explanation for this scaling, based on a
non-perturbative analysis of the system’s phase-space structure. Gravitational collapse is shown
to drive a turbulent phase-space cascade of the quadratic Casimir invariant, where the linear and
non-linear time scales are balanced. A parallel is drawn to Batchelor turbulence in hydrodynamics,
where here large scales mix smaller ones via tides. The k−d scaling is also derived by expressing P (k)
as a phase-space integral in the framework of kinetic field theory, which is analysed by the saddle-
point method; the dominant critical points of this integral are precisely those where the time scales
are balanced. The coldness of the dark-matter distribution function—its non-vanishing only on a d-
dimensional sub-manifold of phase-space—underpins both approaches. The theory is accompanied
by 1D Vlasov–Poisson simulations, which confirm it.

I. INTRODUCTION

One of the basic observable quantities in the study
of the large-scale structure of the Universe is the two-
point correlation function of the over-density field, whose
Fourier transform is the power spectrum, P (k, t) [1, 2].
The two-point correlation function is of fundamental im-
portance, for it allows us to probe theories of the early
Universe, dark matter, inflation, and to study gravity
[1, 3–5]. In this paper, we will explore the small-scale
asymptotic behaviour of P (k) (we omit the explicit time
dependence when it is not confusing to do so), in the
limit k ≫ knl, where the (inverse) non-linear scale knl
is defined by

∫∞
knl
Plin(k)k

2dk = 2π2δ2c , with δc denoting

the spherical-collapse threshold [6]. The small-scale limit
of P (k) is theoretically important for the understand-
ing of the gravitational N -body problem in the large-N
limit [7], and the formation of large-scale structure, non-
linear clustering and self-similarity [1, 8], but also for the
understanding of the nature of dark matter and gravita-
tional back-reaction of small scales on large ones—both
relativistic [9] and in the context of the effective field
theory of large-scale structure [10] (for reviews and ref-
erences see, e.g., [6, 11, 12]) and the general bias expan-
sion [3]. Even before modifying gravity, it is important to
know what non-linear phenomena occur in the standard
theory.

∗ yb.ginat@physics.ox.ac.uk

Data from cosmological dark-matter-only simulations
are consistent with P (k, t) developing a k−d tail on small
scales [e.g., 13, fig. 6] in 3D, and in 1D, as shown
in refs. [14, figure 6] or [15, figure 1] (cf. [16]). The
emergence of a power-law tail—and the simplicity of its
exponent—hint that a fundamental physical reason for it
must exist, ultimately stemming from the nature of the
gravitational interaction of cold dark matter. Here, we
will describe the mechanism that produces this asymp-
totic scaling, by studying the mass distribution in the
velocity space as well as in position space.
We restrict ourselves to the strictly collisionless case

where the particle mass m → 0, while the total parti-
cle number N → ∞, so that M ≡ Nm remains fixed
(and so does the volume). In this limit, the phase-space
distribution of particles is well described by the Vlasov
equation [1, 14, 17–20]:1

∂f

∂η
+ v · ∂f

∂x
+ g · ∂f

∂v
= 0, (1)

where f is the distribution function (the one-point prob-
ability density in phase-space), η is the conformal time,
defined by dt = adη, where a is the scale factor of
the background (which is taken to be a Friedmann–
Lemâıtre–Robertson–Walker space-time), x and v are

1 The collisionless Vlasov equation, of course, ignores dissipation
via collisions (or equivalently, finite-N effects). However, we will
find that due to turbulence, such dissipation will inevitably be
accessed; this point will be discussed further in appendix A 2.
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the co-moving position and velocity, and the gravita-
tional field g is self-consistently derived from Poisson’s
equation

∇ · g ≡ −∇2Φ = −4πGa2
[∫

f(x,v, η)ddv − ρm

]
, (2)

where ρm is the mean background matter density and Φ
is the gravitational potential. This system of equations
applies well on scales much smaller than the horizon,
for particles much slower than the speed of light, c.
Henceforth, we will work in general spatial dimen-
sions d ∈ {1, 2, 3}, to enable comparison between our
theory and d = 1 simulations.

Dark matter is assumed to be cold initially, with a
thermal velocity vth → 0, so that the initial gravita-
tional potential energy is much larger than the initial
thermal energy (this assumption is excellent for our Uni-
verse [4, 21–26]). Clearly, despite being cold, dark mat-
ter is inherently kinetic, and cannot be described by fluid
equations adequately on non-linear scales, because these
equations cease to be valid after streams cross [20, 27, 28].

Below we will derive the k ≫ knl limit of P (k) in two
complementary ways. First, we will study the problem in
phase-space, and show that the small-scale asymptotics
arise when the time scales involved in the Vlasov equa-
tion balance with each other in a particular way, to be
explained below. Two ingredients will comprise this ar-
gument: the balance of time scales, and the conservation
of the second Casimir invariant [29–33]

C2 ≡
∫∫

f2ddxddv. (3)

This invariant is sometimes referred to as ‘enstrophy’,
‘phasestrophy’, or ‘f -strophy’. The Vlasov equation con-
serves an infinite number of phase-space invariants—not
only C2—but we will use C2 here because it is directly
related to the power spectrum (vide infra). We will show
that the spectrum can be predicted if small-scale struc-
ture is understood as resulting from a turbulent cascade
of C2 from large scales to small ones.

For the second approach, we use non-perturbative ki-
netic field theory (KFT) for cosmic structure formation
(for a review, see [34]). Here, P (k) is expressed as an
integral over the initial particle positions and velocities
(weighted by the initial-condition probability distribu-
tion) of the characteristic function of the displacement
field; this integral will turn out to have an explicit k de-
pendence, and we will utilise this to perform an asymp-
totic saddle-point analysis.

The two approaches complement each other, both re-
lying on the same assumptions, but highlighting their
rôles in different ways. We remark that using phase-
space expressions ensures that the validity of our results
extends beyond the bounds of configuration-space-based
approaches, such as Lagrangian [16, 35, 36] or Eulerian
techniques [27]; in particular, it is regular at stream-
crossing, and accounts for free streaming automatically.

Indeed, as we already mentioned above, the inherently
kinetic phenomenon of multi-scale structure of the distri-
bution of dark matter, developing by virtue of strongly
non-linear interactions, suggests that a type of turbulence
in phase-space is involved. In turbulent phase-space dy-
namics, there is a flux of C2 from large scales to small
ones [32], and we will show below that C2 cascades to
smaller scales by gravitational collapse too. As early
as [36], it was realised that the phenomena of gravita-
tion and turbulence might be linked—here we make the
analogy precise and characterise this gravitational turbu-
lence.
The rest of this paper is organised as follows: in §II,

we formulate the first approach, based on the Vlasov–
Poisson system, and show how the concept of a ‘phase-
space cascade’ can be used to derive the small-scale
asymptotics of the phase-space power spectrum, from
which P (k) may be computed. In §III, as promised
above, we derive the same asymptotic scaling of P (k)
again, but via a saddle-point analysis of an integral ex-
pression for P (k). We test our theory by comparing it
with numerical Vlasov–Poisson simulations throughout
the paper. Our conclusions are discussed in §IV and sum-
marised in §V.

II. PHASE-SPACE TURBULENCE

We start by describing the initial condition in §IIA—a
cold stream or a collection of streams—and show what
its evolution looks like, and then derive the equation that
governs the phase-space Fourier transform of f in §II B.
We will then analyse the time scales involved in the
Vlasov–Poisson system in §II C, and show in §IID that
a turbulent flux of C2 to smaller scales characterises the
dynamics. To do that, we will derive a transport equa-
tion for the integrand of C2 with a source term; in §II E
this source will be found to receive contributions from all
larger scales, because of the Jeans instability [37]. This in
turn will allow us to find the asymptotic scaling of P (k)
in §II F. We will present simulation results throughout
this section, to test the theory.

A. Cold streams

We assume that the system has an initial condition
consisting of a superposition of streams, each one of the
form:

f(η = 0,x,v) = fin(x,v) ≡
ρin(x)

(2πv2th)
d/2

e
− [v−uin(x)]2

2v2
th , (4)

where v2th ≪ min
{
u2in,

∫
|Φin| finddxddv

}
, where Φin is

derived from ρin via equation (2); that is, the initial
condition is very cold—the thermal energy is negligi-
ble in comparison with the gravitational potential en-
ergy of the system or the kinetic energy of mean flows.
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In equation (4), ρin and uin are typically Gaussian ran-
dom fields [1, 3], and uin is a gradient flow [2]. We
also choose the co-ordinates so that

∫
ρ(x)u(x)ddx = 0,

where ρ(x) is the density and ρu ≡
∫
vfddv. The

distribution (4) is essentially a single stream, and, in
fact, its Maxwellian shape may be approximated by a
Dirac delta-function. The thermal speed vth is cho-
sen to be the smallest velocity scale in the problem, so
the entire analysis of this paper focuses on the limit
where svth ≪ 1, where s is the Fourier conjugate to
velocity (see §II B). The distribution function remains
a collection of streams as it evolves in time, by Liou-
ville’s theorem [e.g. 38]: locally almost everywhere in
phase-space (in a sufficiently small neighbourhood of al-
most any point (x0,v0) where f ̸= 0), it can be written
as ρx0,v0(x, η)δ

D (v − ux0,v0(x, η))+O(vth), where δ
D is

the Dirac delta function; it remains so as long as colli-
sions or finite-N effects may be ignored. The local func-
tions ρx0,v0(x, η) and ux0,v0(x, η) might in general differ
from the density ρ(x, η) and the mean velocity u(x, η).

To study the evolution of the initial condition (4), we
have conducted a suite of Vlasov–Poisson simulations
in 1D on a Minkowski background (a(η) = 1), using
the Gkeyll code [39], which is originally a Vlasov solver
for kinetic plasmas; by setting the vacuum permittivity
to ε0 < 0, we can use the code to study gravity as op-
posed to electrostatics. Details on the numerical method
and simulation set-up may be found in appendix A. The
simulation’s units are chosen so that τ−2

0 ≡ 4πGM/L = 1
(unit of time),2 k0 ≡ 2π/L = 1 (unit of length) and v0 ≡
(k0τ0)

−1 = 1 (unit of speed), where L is the length of
the simulation ‘box’ (with periodic boundary conditions)
and M is the total mass in the box.

The time evolution of a cold system of three streams—
three copies of equation (4)—is displayed in figure 1. This
figure shows that each stream is distorted quickly, by ro-
tating and twisting in phase-space. Evidently, this mo-
tion generates small-scale structure, which we consider
to be a type of turbulence in phase-space. As usual, in
order to characterise the turbulence and its spectrum of
fluctuations, one must identify an invariant quantity that
cascades to small scales, what the cascade’s time scale is,
and also the flux of that invariant quantity [40]. We will
do so in §§IID, II C, and II E, respectively.

That the turbulence is in phase-space and not
merely in position space is clear: already at t = 6τ0,
the system can no longer be described as three
streams almost anywhere, so standard cosmological per-
turbation theory would already be inadequate, and
the root-mean-square (rms) peculiar velocity vrms ≡[∫

dv (v − u(x))
2
f(x, v)/ρ(x)

]1/2
is much larger than

vth, and is of order v0. However, in phase-space, we see

2 The Poisson equation (2) implies that G has different dimensions
in 1D from 3D.

visually that the topology of three single lines is pre-
served.
The fact that the system is a collection of streams

implies that locally in phase-space, one can de-
scribe each stream with fluid equations: insert-
ing ρx0,v0

(x, η)δD (v − ux0,v0
(x, η)) into the Vlasov

equation gives the continuity and Euler equations
for ρx0,v0 and ux0,v0 , respectively, and the divergence of
the latter yields the Raychaudhuri equation [41], which
describes gravitational collapse under the Jeans instabil-
ity [20, 35, 37, 42–48]. Written in the frame of reference
that moves with a given stream, it reads

dθ

dη
+Hθ + θ2

3
+ σijσij = ∇ · g +

Σ

ρx0,v0

+ 2ωiω
i, (5)

where H is the conformal Hubble constant, θ ≡ ∇·ux0,v0

is the stream’s divergence, ω ≡ ∇ × ux0,v0/2 is its
vorticity, σij ≡ [∂i(ux0,v0)j + ∂j(ux0,v0)i − 2θδij/3] /2 is
its shear, d/dη is the Lagrangian derivative along the
stream, Σ/ρx0,v0 is a pressure-related term that isO(v2th).
Below, g is the gravitational field felt by the stream. We
will use equation (5) to estimate the time scale τJ of grav-
itational collapse.

B. Batchelor approximation

We need to characterise a turbulence, which is inher-
ently a multi-scale process, so it is more convenient to
study equations (1)-(2) in Fourier space.

1. Fourier transform

Let is define the Fourier transform (marked by a cir-
cumflex) as follows:

f̂(k, s) ≡
∫∫

f(x,v)eik·x−is·vddxddv, (6)

and similarly for all other functions of (x,v). For d > 1,
we denote k ≡ |k|, s ≡ |s|, etc. Under this Fourier trans-
form, the Vlasov–Poisson system (1–2) becomes

∂f̂

∂η
+ k · ∂f̂

∂s
+ is ·

∫
ddk′

(2π)d
ĝ(k′)f̂(k− k′, s) = 0, (7)

k2Φ̂ = −4πGa2ρ̂, (8)

where ρ̂ is the Fourier-transformed density. The second
Casimir invariant, defined by equation (3), is given in
Fourier space by Parseval’s theorem:

C2 =
1

(2π)2d

∫∫
|f̂ |2ddkdds. (9)

The integrand |f̂2| is directly related to the density power
spectrum. Indeed, let the phase-space power spectrum be

F̂ (k, s) ≡ ⟨|f̂ |2⟩, (10)
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FIG. 1. Colour plots of the distribution function showing the time evolution of three cold streams. See text and appendix A
for details. A video is available here.

where ⟨·⟩ is an ensemble average over many random real-
isations of the initial conditions; then the density power
spectrum is

P (k) ≡ 1

V
⟨ρ̂(k)ρ̂∗(k)⟩ = F̂ (k, 0)

V
, (11)

where V is the spatial volume.

https://ybginat.com/index.php/gravitational-turbulence/
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2. Flux of C2

Let us now see how the integrand of the second Casimir invariant (9) evolves: multiplying equation (7) by f̂∗ and
taking the real part, we find

∂|f̂ |2

∂η
+ k · ∂|f̂ |

2

∂s
+ is ·

∫
ddk′

(2π)d

[
ĝ(k′)f̂∗(k, s)f̂(k− k′, s)− ĝ∗(k′)f̂(k, s)f̂∗(k− k′, s)

]
= 0. (12)

Integrating equation (12) over all k and s yields the conservation of C2, as it should.
Let δgr be the amplitude of a typical fluctuation in g on scales r = 1/k and smaller, viz.,

δg2r ≡ 2

V

∫
ddk′

(2π)d
〈
|ĝ(k′)|2

〉 (
1− eik

′·r
)
∼ 1

V

∫ ∞

k

ddk′
〈
|ĝ(k′)|2

〉
. (13)

We take g to be a sufficiently continuous field, so that for sufficiently small values of r,

δgr ∼ κrλ + h.o.t. (14)

with Hölder exponent λ ≤ 1, and κ a constant coefficient. A smooth gravitational field has λ = 1, because one may
Taylor-expand g, meaning that the fluctuations are dominated by tidal forces (and κ has dimensions of [time]−2).3

We prove in §II F that λ = 1 follows from Poisson’s equation (2), in conjunction a balance of time scales (§II C) and
a C2 cascade, in d ≤ 3 spatial dimensions, but to simplify the exposition we will take λ = 1 now, a priori.

Let us now take the large-k limit of equation (12). Then, for a smooth gravitational field (λ = 1), the last term on
the left-hand side is dominated by two contributions: (i) k′ ≪ k and (ii) |k− k′| ≪ k. These are sometimes referred

to as ‘squeezed’ triangles; case (i) is also known as the Batchelor limit [32, 49, 50]. Taylor-expanding f̂(k − k′, s) in
the Batchelor limit turns the non-linear term in (12) into

is ·
∫

ddk′

(2π)d

[
ĝ(k′)f̂∗(k, s)

(
f̂(k, s)− ∂f̂

∂ki
k′i

)
− ĝ∗(k′)f̂(k, s)

(
f̂∗(k, s)− ∂f̂∗

∂ki
k′i

)]
+ h.o.t.

≃ −i

∫
ddk′

(2π)d
sj

[
ĝj(k

′)k′if̂∗(k, s)
∂f̂

∂ki
− ĝ∗j (k

′)k′if̂(k, s)
∂f̂∗

∂ki

]

= −i

∫
ddk′

(2π)d
sj ĝj(k

′)k′i

[
f̂∗(k, s)

∂f̂

∂ki
+ f̂(k, s)

∂f̂∗

∂ki

]
≡ −isjΦi

j

∂|f̂ |2

∂ki
. (15)

The transition from the first line to the second in (15) is valid because, in the centre-of-mass frame, the leading-order
terms are proportional to

∫
ddk′ĝ(k′) = 0.

Thus, the non-linear term reduces to a tidal interaction: on a given (small) scale corresponding to a (large) wave-
number k, the distribution function f is distorted by the gravitational field at the same (large) energy-containing
scale—the matrix Φi

j = −iδin∂n∂jΦ is the Hessian matrix of the gravitational potential, i.e., the tidal matrix.

3. Ensemble average

We now have, from equations (12) and (15),

∂|f̂ |2

∂η
+ k · ∂|f̂ |

2

∂s
− isjΦi

j

∂|f̂ |2

∂ki
= −(ii), (16)

where (ii) represents the last term in equation (12) in the limit (ii), |k − k′| ≪ k; upon substituting k′′ = k − k′ in
equation (12), one has

(ii) ≃ is ·
∫
k′′≪k

ddk′′

(2π)d

[
ĝ(k− k′′)f̂∗(k, s)f̂(k′′, s)− ĝ∗(k− k′′)f̂(k, s)f̂∗(k′′, s)

]
+ h.o.t.

≃ is

V
·
[
ĝ(k)f̂(0, s)f̂∗(k, s)− ĝ∗(k)f̂∗(0, s)f̂(k, s)

]
≃ is ·

[
ĝ(k)f̂(s)f̂∗(k, s)− ĝ∗(k)f̂

∗
(s)f̂(k, s)

]
, (17)

3 The case λ > 1 is also smooth, but highly atypical, where the
tidal forces vanish; while this could happen in isolated points

with exactly zero over-density, we ignore it here.
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where f ≡
∫
fddx/V is the volume average of f , and we have approximated the integral

∫
k′′≪k

ddk′′ ∼ (2π)dV −1 by
the contribution from the smallest wave-number.

Equation (16) is a transport equation in Fourier space, with a source −(ii). Taking its average yields an evolution
equation for the power spectrum (10):

∂F̂

∂η
+ k · ∂F̂

∂s
− isj

∂

∂ki

〈
Φi

j |f̂ |2
〉
= Ŝ, (18)

with the source

Ŝ = −
∫∫

ddx1d
dv1d

dx2d
dv2 eik·(x1−x2)−is·(v1−v2)

〈
f(x1,v1)g(x2) ·

∂f(v2)

∂v2
+ f(x2,v2)g(x1) ·

∂f(v1)

∂v1

〉
. (19)

Equation (19) is derived from equation (17) as follows. Let us take the inverse Fourier transform of equation (17):

i

∫
ddkdds

(2π)2d
s ·
[
ĝ(k)f̂(s)f̂∗(k, s)− ĝ∗(k)f̂

∗
(s)f̂(k, s)

]
e−ik·x+is·v

=
∂

∂v
·
∫

ddkdds

(2π)2d

[
ĝ(k)f̂(s)f̂∗(k, s)− ĝ∗(k)f̂

∗
(s)f̂(k, s)

]
e−ik·x+is·v

=
∂

∂v
·
∫

ddkdds

(2π)2d

[
ĝ(k)f̂(s)f̂(−k,−s)− ĝ(−k)f̂(−s)f̂(k, s)

]
e−ik·x+is·v

= 2
∂

∂v
·
∫

ddyddu g(y + x)f(y,u)f(u+ v), (20)

where the last line follows from the convolution theorem and the reality of f and g. Fourier transforming (20) and
writing x1 = x+ y, x2 = y (and likewise for velocities) yields

(ii) ≃ is ·
[
ĝ(k)f̂(s)f̂∗(k, s)− ĝ∗(k)f̂

∗
(s)f̂(k, s)

]
(21)

=

∫∫
ddx1d

dv1d
dx2d

dv2 eik·x−is·v
[
f(x2,v2)g(x1) ·

∂f(v1)

∂v1
+ f(x1,v1)g(x2) ·

∂f(v2)

∂v2

]
, (22)

where we have used the symmetry between 1 and 2. Ensemble averaging gives equation (19).

We will estimate Ŝ in §II E below. Note, that Ŝ, as
given in equations (17) and (19), need not vanish when
integrated over all k and s, because equation (18) is only
valid in the large-k limit: non-squeezed contributions
would matter at small k. Contrast this to equation (12),
where there is no ‘source’ of C2; effectively, equation (19)
represents not an injection of total C2 into the system,
but rather a transfer of C2 from large scales to small ones.

The three-point correlation function
〈
Φi

j |f̂ |2
〉
is com-

posed of Φi
j , which is by construction a large-scale quan-

tity, multiplied by |f̂ |2, which depends on k. We con-
tend that, as Φi

j varies only on large scales, it will also
vary much less from one ensemble realisation to another

than |f̂ |2.
The time scales appearing on the left-hand side of

equation (18) are the advection (linear) time scale asso-
ciated with k · (∂/∂s), and the non-linear (gravitational)
time scale associated with sjΦi

j∂/∂k
i ∼ s δgr. We will

discuss these time scales in §II C. Then, we will describe
the left-hand side of (18) in §IID, and the right-hand
side in §II E.

C. Critical balance

There are two (conformal) time scales in the Vlasov
equation (1): linear, τl ∼ r/δv, and non-linear, τnl ∼
δv/δgr, where δgr is defined in equation (13) and δv is
a velocity-difference scale. In the Fourier-transformed
Vlasov equation (7) the linear (or phase-mixing) time
scale is

τl ≡
s

k
, (23)

and the non-linear (gravitational) time scale is

τnl ≡
1

s δgr
, (24)

where r = 1/k and s = 1/δv. In the Batchelor approxi-
mation (16), the non-linear time scale is τ−1

nl = s
∥∥Φi

j

∥∥ /k,
which is the same as (24) (up to an order-unity constant).
In the highly non-linear régime, the two time scales

must balance each other: if τl were much shorter than τnl,
so that only the first two terms of equation (7) domi-
nated, phase mixing would drive velocity gradients up
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until τnl shrank to the same order of magnitude as τl.
Conversely, if τnl were much smaller, then gravitational
collapse would drive spatial gradients of f , and, therefore,
g, up until τl and τnl matched. This so-called critical bal-
ance may be thought of as a type of dominant-balance
asymptotic argument for the Vlasov equation, where one
allows the system enough time to establish this balance
(see [32, 33, 51–53] for some examples of critical balance
in various areas of physics).

Critical balance amounts to setting τl ∼ τnl. These are
the only time scales in equation (18), and therefore the
cascade time τc, which is the time scale for the transfer
of F̂ from scale to scale, must also be

τc ∼ τl ∼ τnl. (25)

We will use this equality of time scales in §II F to fix
the scalings of the phase-space power spectrum. Given
equation (25), for each length scale r = 1/k, there exists
a corresponding (inverse) velocity scale

sc(k) ≡

√
k

δgr
. (26)

It is also convenient to define kc(s) as the inverse function
of sc. If the two time scales, τl and τnl, are equal, their
shared value, τc, is also known as critical-balance time.
If δgr ∼ κr, as expected for a smooth field, dominated

by the outer scale, then

τc ∼
1√
κ
, (27)

sc(k) =
k√
κ
, (28)

kc(s) =
√
κs. (29)

The argument that the two time scales must bal-
ance applies only to modes well inside the horizon, such
that k ≫ H/c (where H is the conformal Hubble con-
stant). Indeed, the conformal time in any asymptotically
de-Sitter cosmology (i.e., one with a positive cosmological
constant) is bounded from above by some value ηmax [54];
so, for modes with k too small, linear phase mixing can
only generate velocity gradients up to smax ≃ kηmax.

If the amplitude of f̂(k, smax) is not large enough for
the non-linear term to become important, then the evo-
lution of such a mode will always be primarily linear.
Here we are interested in the k → ∞ limit, so it is
safe to ignore this nuance. Additionally, due to the fi-
nite age of the Universe and hierarchical structure for-
mation, the decrease of τnl until it matches τl might
not have happened yet for all values of k, as structures
on the largest scales have yet to collapse. Again, this
does not affect the k → ∞ limit, and we may simply
take k ≫ max {knl,H/c}, where knl is defined in the
introduction. In a sense, max {knl,H/c} serves as the
‘outer scale’ for the turbulence discussed below.

D. Phase-space cascade

Let us now see what kind of flow in (k, s) space is en-

gendered by equation (18), ignoring Ŝ until §II E. The
positive eigenvalues of iΦi

j will drive a rotation in (k, s),
where small-scale velocity structure interchanges with
small-scale spatial structure, while the negative eigen-
values will drive a flow of both to ever smaller scales.
In fact, one can analyse equation (16) directly—before
ensemble-averaging—while still ignoring the right-hand-
side. As Φi

j generically depends on time, this analysis
holds locally in time (and space, on scales below the
outer scale), but by critical balance, the long mode (large-
scale) Φi

j cannot vary on a time scale shorter than the
critical-balance time. We therefore approximate it as
constant (in which case there are analytical solutions),
but the qualitative features described here—namely, a
rotation in (k, s) and a flow to larger values—remain also
true for a time-dependent Φi

j . Generically, in d > 1, iΦi
j

would have both positive and negative eigenvalues, be-
cause this it is dominated by the large scales.

Consider a positive eigenvalue of iΦi
j . If s+ is its cor-

responding eigenvector, then for s ∥ s+, equation (16)
reduces to a transport equation under the action of a
harmonic oscillator potential, i.e., a rotation in the (k, s)
space. This ensures that the large-s structure in the ini-
tial condition is transported to large k, and vice versa.
The negative eigenvalues ensure that there is a flow to
ever smaller scales, because then the solution is a linear
combination of hyperbolic functions (cf. [33]).

In 1D, it would appear näıvely that there is only phase-
space rotation when Φi

j is evaluated in an initially over-
dense region, because there is only one, necessarily pos-
itive, eigenvalue. This, however, is misleading. As the
system evolves, matter moves around, and thus that re-
gion generically changes from being over-dense to under-
dense (alternatively, it does so for different realisations of
the initial conditions), and therefore the sign of iΦi

j also
changes. Thus, there is a temporal sequence of phase-
space rotations and stretchings (see figure 1)—essentially,
differential phase-space rotation, leading to the genera-
tion of small-scale structure (for any d).

Thus, phase-space rotations transfer small-scale struc-
ture from s to k and back, and that is supplemented

by a cascade of |f̂ |2 to ever larger k and s (similar
to the plasma echo joint with a cascade in [32, 33]).4

Hence, equation (16) describes a phase-space turbulence,

where C2, being the integral of |f̂ |2 over scales, is cas-
caded to smaller scales by larger-scale tidal fields, roughly
along the critical-balance line in the (k, s) space.

To test this conclusion numerically, we calculated the
time-averaged phase-space power spectrum F̂ , as a func-

4 This behaviour is generic: chaos—the exponential separation
of nearby trajectories in phase-space—combined with Liouville’s
theorem, necessitates the formation of structure on smaller and
smaller scales.
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FIG. 2. A contour plot of the time-averaged power spec-
trum ⟨|f̂ |2(t, k, s)/C2(t)⟩Time, for the same simulation as in
figure 1 (note that C2 decays because of collisions and finite-
grid effects, so it is sensible to normalise the power spectrum
by C2 at every time).

tion of |k| and |s| (with the negative values folded
on the positive ones), for the simulation shown in fig-
ure 1. This is plotted in figure 2, which shows the con-
tours of the time-average (as a proxy for an ensemble-

average)
〈
|f̂ |2/C2(t)

〉
Time

. They are arranged in a rect-

angular shape: the critical-balance line (§II C) is the di-
agonal of this rectangle, and there is a slight excess along
the line, manifesting the cascade. This rectangular struc-
ture is brought about by the aforementioned rotation in
the (k, s) space, conjoined with the effect of the nega-
tive eigenvalues of iΦi

j , which stretch structures along
the critical-balance line.

E. Source-term behaviour for a cold system

Having described the homogeneous part of equa-
tion (16), let us now consider the source term on its
right-hand side.

1. Phase-space flux

Equation (18) is a conservation equation with a source,
of the form

∂F̂

∂η
+∇k,s · Γ = Ŝ. (30)

Here ∇k,s is a 6-dimensional phase-space gradient, and Γ
is a 6-dimensional flux, whose components are

Γs
i = kiF̂ (31)

Γk
i = −isj

〈
Φij |f̂ |2

〉
. (32)

As described in §IID, there is a flow of C2 to larger
values of k and s. Let us calculate the phase-space
flux Fs flowing through a sphere in s-space of radius s,
where sc(knl) ≪ s ≪ v−1

th . In steady state, integrating
equation (18) over k yields

∂

∂s
·
∫

Γsddk =

∫
Ŝddk. (33)

Integrating both sides over the ball in s-space with ra-
dius s (at all k) and using Gauss’ theorem yields

Fs ≡
∫∫

ŝiΓs
id

dkdd−1s =

∫∫
|s′|<s

Ŝddkdds′, (34)

where ŝi = si/s, and the integral ddk is over all k. Simi-
larly, the flux in k, Fk, is

Fk ≡
∫∫

k̂iΓk
i d

d−1kdds =

∫∫
|k′|<k

Ŝddk′dds. (35)

2. Jeans instability of a stream

We are now finally in a position to estimate the
(k, s) dependence of the flux. We will do that for cold
dark matter, as described in §II A. The coldness of the
distribution—its being a collection of streams—implies
that each stream, in its own reference frame, is Jeans un-
stable, if in an over-dense region. This in turn implies
that in the integral on the right-hand side of equation
(35), all scales add up coherently, as we will show below.

As stated in §IIA, our analysis focuses on the limit
where svth ≪ 1 ≪ svrms, or, equivalently, knl ≪ k ≪
kc(v

−1
th ). On these scales, f is just a collection of streams,

so when zooming in on one of them, and applying the
Raychaudhuri equation (5) in its frame of reference, one
finds that the stream will collapse gravitationally. All the
terms in equation (5) are of dimension [time]−2, and both
last terms on the right-hand-side are O(k2v2th),

5 while the
Hθ term is completely negligible, for k ≫ H/c. Equa-
tion (5) then reduces to

dθ

dη
= −θ

2

3
+∇ · g +O(k2v2th), (36)

which means that for sc(k)vth ≪ 1, the gravity term ∇·g
dominates and there is nothing to stop a collapse. This

5 Indeed, if initially the system had ωi = 0, then, in the limit
vth = 0, this will stay this way locally in phase-space [41].
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collapse occurs on a time scale τg, the gravitational time,
defined by

τ−2
g ∼ |∇ · g| ∼ 4πGδρr (37)

where again r = 1/k, and6

δρ2r ∼
∫ ∞

k

P (k)ddk. (38)

This is nothing but the Jeans instability occurring on ev-
ery stream individually, in its own reference frame; this
is not dissimilar to the instabilities described in, e.g.,
[42, 45]. Indeed, a linear stability analysis of a spa-
tially homogeneous distribution gives a Jeans-instability
growth rate [37]

τ−2
J = τ−2

g − k2v2th, (39)

which is the same as τ−2
J inferred from the Raychaudhuri

equation (36). One special case where the collapse time
may be deduced explicitly is described in appendix C.

Thus, the system experiences collapse on all spa-
tial scales smaller than the outer scale and larger
than 1/kc(v

−1
th ), so the flux (35) at a scale k ≪ kc(v

−1
th ) re-

ceives contributions from all k′ < k; by the above discus-
sion, structures at every scale collapse at a rate τJ ∼ τg,
by equation (39), provided that the system is cold on these
scales, i.e., τgkvth ≪ 1. In other words, C2 from scale k′

arrives at scale k at a rate τ−1
g (k′), so the contribution to

the source from scale k′—which is
∫
Ŝ(k′, s)dds by equa-

tion (35)—must scale like τ−1
g (k′). We thus posit that∫

Ŝ(k′, s)dds ∼ ε/τg(k
′), for a k′-independent constant

ε; so for any k ≫ knl,

Fk =

∫ k

0

ddk′
∫

dds Ŝ(k′, s) = ε

∫ k

0

ddk′

τg(k′)
. (40)

The coefficient ε has dimensions of C2 per unit inverse
volume (cf. equation (3)), and represents the amount of
C2 brought from scale k′ to k. Thus, the amount of C2

injected into scale k−1 by the Jeans instability, from all
k′ ≤ k, is εkd. If τg is proportional to a power of k, then7

Fk ∼ ε
kd

τg(k)
. (41)

By critical balance (25)

τg ∼ τc ∼ τnl ∼ τl (42)

6 We take k ≫ H/c and assume that τg ≪ H−1 so that the scale
factor a in equation (2) is effectively a constant.

7 This is indeed the case for any 0 < λ ≤ 1 in equation (14): by
critical balance (26), one has sc(k) ∝ k(1+λ)/2, so the critical-
balance time is τc ∝ k(λ−1)/2, and the collapse time has the
same scaling with k.

and, for a smooth gravitational field (δgr ∼ κr), τg is
independent of k, whence it follows that in this case Fk

scales as kd. Note, however, that the argument leading
to equation (41) did not require τg to be constant and
would apply for a k-dependent τg.
We show in appendix B that equation (41) is a posteri-

ori consistent with the scaling of the phase-space power
spectrum derived from it in §II F.

F. Spectra from C2 cascade

Now let us use our knowledge of the source, equa-
tion (41), to find the small-scale asymptotics of the

phase-space power spectrum F̂ . To leading order in the
large-(k, s) limit, let

F̂ (k, s) ∼

{
F1k

γsξ, if s≪ sc(k) ≪ v−1
th , k ≫ knl,

F2s
δkσ, if k ≪ kc(s), s≫ v−1

rms,

(43)

for some γ, δ ≤ 0, ξ, σ ∈ R. For P (k) ∝ F̂ (k, 0) to be

finite, F̂ must be independent of s in the limit s ≪ sc,
kc(s) ≪ k ≪ kc(v

−1
th ), whence ξ = 0. Since f must have

a defined velocity variance, σ = 0. It remains to find γ
and δ.
To find γ, consider the amount of C2 on a scale k−1

(or smaller), which is the variance of f over all scales up
to k = 1/r, viz.,

δf2r =
1

(2π)2dV vdrms

∫ ∞

1/r

ddk

∫
dds F̂ . (44)

The flux of C2 is given by equations (35) and (41), so the
rate of change of δf2r is

δf2r
τc

∼ ε

V vdrms

kd

τg
, (45)

where the cascade time τc is defined as the rate of change
of F̂ in equation (18).
At this point we need to invoke critical balance: we

argued in §II C that, since the linear and non-linear time
scales must balance each other, τc must also be the same
as either of them—this was equation (25). It follows im-
mediately from equation (37) that

τc ∼ τg. (46)

Therefore, from equation (45),

V vdrmsδf
2
r ∼ εkd. (47)

The two time scales in equation (45) have cancelled, so
equation (47) holds irrespectively of whether τg is k-
dependent or not.
The s integral in (44) is dominated by s ≤ sc(k) if F̂

declines sufficiently rapidly with s (i.e., if δ ≤ −d, which
will be verified momentarily), where sc(k) is defined in
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equation (26). Inserting F̂ ∼ F1k
γ into equation (44)

and then equating with (47) yields

εkd ∼ F1s
d
c(k)k

γ+d. (48)

This implies

F (k, 0) ∼ F1k
γ ∼ ε[sc(k)]

−d = ε

(
δgr
k

)d/2

. (49)

Now let us use Poisson’s equation to find γ. If
the Hölder exponent in equation (14) is λ < 1, then
by the Paley-Wiener theorem and equations (2) and
(13), F (k, 0) ∝ k2−dδg2r , whence from equation (49),
δgr ∝ k−1, for d ∈ {1, 2, 3}, which means that actually λ
must be 1. This statement is equivalent to the statement
that g is a smooth field, thereby justifying our choice in
§II B. Inserting this into equation (49) yields γ = −d,
whence follows the main result of this paper:

P (k) ∼ ε

V τdg
k−d. (50)

With λ = 1 now confirmed, one can find the exponent δ
in a similar manner. This time, the analogue of equation
(45) for the flux of C2 to higher velocity scales is, by
critical balance and equation (34),

δf2v
τc

∼ ε

V vdrms

[kc(s)]
d

τg
, (51)

where

δf2v =
1

(2π)2dV vdrms

∫ ∞

1/δv

dds′
∫

ddk F̂ (52)

is the variance of f over all velocity scales up to δv = 1/s.
Therefore, by equation (29),

V vdrmsδf
2
v ∼ ε

sd

τdg
. (53)

If F̂ ∼ F2s
δ in the limit s ≫ sc(k), then, similarly to

equation (48),

ε
sd

τdg
∼ F2k

d
c (s)s

δ+d, (54)

whence δ = −d.
We have thus obtained that, for cold dark matter,

F̂ (k, s) ∼ ε×

{
τ−d
g k−d, if s≪ sc(k) ≪ v−1

th ,

s−d, if k ≪ kc(s) ≪ kc(v
−1
th ),

(55)

provided that k ≫ knl and s ≫ v−1
rms. These are the

leading-order asymptotics: they hold for large k at s→ 0,
and large s at k → 0.8 In general, F̂ can also depend on

8 This scaling is marginal, in that the contribution of the region up
to s = sc in the integral in equation (44) turns out to be formally
as large in the region s > sc; this, however, does not invalidate
the conclusion, because if both are dominant, then they both
contribute ∼ sdc , so the rest of the argument still goes through.

the angle between s and k, viz., on k · s. This angular
dependence arises only at the next order in s ≪ sc(k)
or k ≪ kc(s) (whichever obtains), because it must not
exist at s = 0, or at k = 0.

In appendix C, we show that exactly the same scaling
is obtained for an Einstein-de-Sitter background (where
the scale-factor is a(η) ∝ η2), which has an explicit sim-
ilarity symmetry, and hence an explicit way of defining
the collapse time.

G. Numerical results

Let us now check whether the theoretical asymptotic
scalings (55) are reproduced in our 1D Vlasov–Poisson
simulation. The power spectra of the system illustrated
in figure 1 are shown in figure 3: a k−1 power law estab-
lishes itself quickly, persisting up to k ∼ 100k0, which is
of the order of kc(v

−1
th ), as expected. These spectra are

just |f̂ |2/C2(t), averaged over short time intervals (com-
pared with the simulation’s duration) as a proxy for the

ensemble average. We re-scale |f̂ |2 by C2(t) at every time
step, because C2 decays due to collisions and finite-grid
effects. In figure 4, we average over the entire simulation,
displaying cleaner power laws in the appropriate range
of k and s. While the system is not stationary, this only
affects the amplitude—not the overall scaling—and fig-
ure 3 shows that the re-scaling by C2 corrects for that;
hence, we can trust figure 4 to give an adequate approx-
imation for F̂ .

As the system is sourced by the gravitational-collapse
instability, which was shown in §II E to continue un-
til (kvth)

−1 matches the collapse time, the scaling of the
power spectrum must be truncated at vth. To test the
theory further, it is necessary to see whether it is indeed
the case that the asymptotics (55) persist until vth is
reached. We ran identical simulations, differing only by
the value of vth, to verify this. The result is presented in
figure 5: the left column has vth = 0.01v0 while the right
column has vth = 0.05v0. The s-spectra in the bottom
row show that indeed, the s−1 power law is truncated
at a lower value of s, by a factor that matches the ratio
of vth for the two runs. The s−2 (or k−2) scaling of F̂
at svth ≫ 1 (or k ≫ kc(v

−1
th )) is a known result in plasma

systems [33], discussed in appendix A 3.

The k−d asymptotic of the density power spectrum
may be derived by an altogether different, yet systematic
approach—by performing an asymptotic analysis of the
an integral expression for P (k) and examining its critical
points. We do so in §III below, which is self-contained.

III. SADDLE-POINT APPROACH

In this section, we focus on d = 3 spatial dimensions.
For pure gravitational Newtonian evolution of N identi-
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FIG. 3. The time evolution of the power spectra ⟨|f̂ |2/C2(t)⟩10 for the simulation illustrated in figure 1 (early times: blue;
late times: red). The time averaging was over 10 simulation outputs (corresponding to time windows of duration 1.36τ0). Left
panel : the k-spectrum at s = 0.52/v0. Right panel : the s-spectrum at k = k0. Both spectra are compensated by the expected
asymptotics (multiplied by k and s, respectively). A k−1 power law establishes itself quickly, extending to k ∼ 200k0, which is
of the order of kc(v

−1
th ), as expected; similarly, the s−1 power law extends to sv0 ∼ 200.

FIG. 4. The power spectra for the same simulation as in figure 1, but now averaged over t ∈ [0, 30]τ0, as a proxy for the ensemble
average. Unlike in figure 3, they are uncompensated, and display the theoretical k−d and s−d scalings explicitly (d = 1).

cal particles, the power spectrum is given exactly by [34]

P (k, t) =
M2

V

N∏
n=1

∫
d3qnd

3pnP({q} , {p})eik·[x1(t)−x2(t)],

(56)
where (qn,pn) is the initial phase-space position of
particle n, (xn(t),vn(t)) is the phase-space position
of particle n at time t, and P({q} , {p}) is the joint
probability distribution of the initial phase-space posi-

tions ({q} , {p}) ≡ {(pn,qn)}Nn=1 of all particles. This
equation is permutation-invariant, and, therefore, the

choice of two particles is arbitrary.
For cold dark matter with Gaussian initial conditions,

the initial distribution P is

P({q} , {p}) = V −NC({q} , {p})√
(2π)3N detCN

pp

e−{p}T (CN
pp)

−1{p}/2,

(57)
where CN

pp = CN
pp({q}) is the 3N × 3N covariance ma-

trix of {p}, and C encapsulates initial density-density and
density-momentum correlations [55], both of whose func-
tional dependence on particle positions depends on the
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FIG. 5. A comparison between the evolution and the spectra of two systems with identical initial conditions, save for the value
of vth. Left panels: a cold case, vth = 0.01v0; right panels: a warmer case, vth = 0.05v0. The plots in the bottom row show
the s spectra at the end of the simulations, compensated by s. In the warmer case, the spectrum ceases to scale as s−1 at
around sv0 ∼ 10, while in the colder one, it does so at sv0 ∼ 50 (marked by grey lines). In both cases the s−1 scaling is replaced
at svth ≫ 1 by s−2. See text and appendix A for details. Videos are available here.

https://ybginat.com/index.php/gravitational-turbulence/
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cosmology (we take a ΛCDM background).
The usual procedure to obtain the power spec-

trum P (k) from equation (56) would involve integrat-
ing out particles 3, . . . , N , leaving only a 12-dimensional
integral, over the phase-sub-space of particles 1 and 2.
We will, however, go the other way round, and integrate
first over the relative position and momentum of this
pair, and only then over all other particles—we will see
that this order of integration is well suited to deriving
the asymptotics of P (k, t) as k → ∞. We change the
integration variables from q1 and q2 to q ≡ q1 − q2

and Q ≡ (q1+q2)/2, and to their conjugate momenta, p

and P, respectively. As {p}T (CN
pp)

−1 {p} is quadratic in
{p}, we can make the p dependence explicit, viz.,

{p}T (CN
pp)

−1 {p} ≡ pTΣ−1 (q)p

− 2a
(
q,Q,P, {(q, p)}N3

)
· p− 2B

(
q,Q,P, {(q, p)}N3

)
,

(58)
where a is a linear function of momenta and B a
quadratic one. Below we will require the following prop-
erties of CN

pp, derived in appendix D, based on the as-
sumption vth → 0 (so the conclusions again will be valid
at k ≪ kc(v

−1
th ), as in §II B 1): (i) Σ ≃ Aq2 at small q for

some order-unity matrix A, (ii) |a| ∼ O(q−1) (at most)
in this limit, and (iii) at q → ∞, the correlation matrix
CN

pp tends to a constant, i.e., Σ is order unity in the limit
q → ∞.
Using Duhamel’s principle for Hamilton’s equations of

motion, one has [e.g., 34]

ik·[x1(t)− x2(t)] = iq·k+igqp (t, tinitial)p·k+ikψI , (59)

where gqp is a ‘propagator’ that encapsulates the linear
evolution (defined below), and the ‘interaction term’ is

kψI

(
P,Q, {(q, p)}N3

)
(60)

≡ k ·
∫ t

0

dt′gqp(t
′, tinitial) (F1(t

′)− F2(t
′)) ,

Fn being the additional acceleration of particle n, relative
to its motion in the part already included in gqp, caused
by all other particles. For example, if gqp = t−tinitial, one
re-obtains regular Newtonian dynamics. Using results
of first-order cosmological perturbation theory (or, alter-
natively, re-summed kinetic field theory [56]), we take
gqp(t) ≡ [D+(t)−D+(tinitial)] / [dD+/dt], where D+ is
the ΛCDM growth factor. Then ignoring the ψI term
in (59) would just yield the Zel’dovich approximation,
whose asymptotics were studied by [57, 58].

A. Possible saddle points

Using equations (58) and (59), we define the exponent

φ ≡ −1

2
pTΣ−1p+a·p+iq·k+igqpp·k+ikψI+B, (61)

so the integral (56) for the power spectrum turns into

P (k, t) ∝
N∏

n=3

∫
d3qnd

3pnd
3Qd3Pd3qd3p

V N
√
(2π)3N detCN

pp

C({q} , {p})eφ.

(62)
We start by integrating over p and q, applying the
saddle-point approximation. This is a movable-saddle
problem, so it requires care in handling [59, 60].9 The
function ψI is a smooth function of q and p, because it
arises from the Hamiltonian flow in phase-space, gener-
ated by a smooth gravitational potential (recall that we
neglect collisions and that time is bounded). This asser-
tion is just the statement that λ = 1 as in §II B 1. Letting
ψq ≡ ∂ψI/∂q and ψp ≡ ∂ψI/∂p, the exponent (61) is
stationary when

− Σ−1p+ a+ igqpk+ ikψp = 0,

− 1

2
pi
∂(Σ−1)ij

∂q
pj + pi

∂ai

∂q
+
∂B

∂q
+ ik+ ikψq = 0.

(63)
Let us parameterise the solution of these equations as

p = kαc, q = kβd, (64)

where c and d ∈ C3 are complex vectors whose magni-
tude remains finite as k/knl → ∞. Together with α, β,
they are to be determined by equations (63), by seeking a
dominant balance, i.e., such a balance that the exponent
(61) has the weakest k dependence around the stationary
point that solves equations (63).
A priori, equations (63) could permit a balance that

is independent of the initial-condition distribution, i.e.,
that same balance would exist for uniform initial con-
ditions. But in that case, Liouville’s theorem—after
changing variables from the initial phase-space positions

{(qn,pn)}N to the current ones {(xn,vn)}N—ensures
that this yields a contribution to P (k) proportional to
δD(k), whence this balance is not dominant. Conversely,
the dominant balance must involve the first terms on
the left-hand sides of equations (63). If β > 0, then, as
Σ −→

q→∞
const, the first term in the first of equations (63)

is proportional to p. As this must play a part in a domi-
nant balance, this implies that α = 1. Substituting such
a saddle point into equation (61) gives an exponentially
suppressed contribution, ∼ O

[
exp(∝ −k2)

]
to P (k) at

most.
Thus, stationary points with β < 0 are dominant, as

they could contribute a power-law tail to P (k). For β <
0, equations (63) imply 1 = α − 2β and 1 = 2α − 3β,
whence α = β = −1. This is consistent as long as

lim
(q,p)∼k−1

k→∞

(∣∣ψq

∣∣ , ∣∣ψp

∣∣) = O(1), (65)

9 Note also that the saddle point may be complex, but that is
innocuous, since the exponent can be continued analytically to
the complex plane.
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which is generically valid, and so the interaction term
is potentially as important as the linear term; that both
are equally important is essentially a statement of critical
balance (cf. §II C).

B. Evaluation of the asymptotics

Having proven that the asymptotic expansion of the
power spectrum is given, up to exponentially small (in k)
contributions, by its dominant saddle point at q, p ∼ k−1,
one is allowed to replace φ with its expansion at small q
and p. This yields

φ ≃ −1

2
pTΣ−1p+ a · p+ iq · k+ igqpp · k+ ik

[
p ·ψp(0) + q ·ψq(0)

]
+B(q = 0) + o(1). (66)

With this asymptotic approximation for φ, we need to integrate equation (62) over p and q to obtain its asymptotic
scaling with k. Observe that detCN

pp factorises into detΣ multiplied by normalisation factors for the other momenta
variables. The only other pieces that still depend on Q, P, and the initial positions and momenta of the other particles
are C, a, B, and ψq,p. Thus,

P (k, t) ≃ M2

V 2

〈∫
d3qd3p C

[(2π)3 detΣ]
1/2

exp

(
−1

2
pTΣ−1p+ a · p+ iq · k+ igqpp · k

)
eik[p·ψp(0)+q·ψq(0)]

〉
, (67)

where the average is over the position and momentum of the centre of mass of particles 1 and 2, as well as the positions
and momenta of all the other particles (eB is absorbed into the average). Integrating over p, we get

P (k, t) ≃ M2

V 2

〈∫
d3q C exp

{
−k

2

2

[
gqpk̂+ψp(0)−

ia

k

]T
Σ(q)

[
gqpk̂+ψp(0)−

ia

k

]
+ iq · k+ ikq ·ψq(0)

}〉
. (68)

This integration does not introduce any powers of k because both d3p and
√
detΣ are proportional to k−3 in the

vicinity of the stationary point, so the two cancel. Recalling that the saddle point is at q = d/k, where d is a finite
constant, we change variables to y = kq, whence

P (k, t) ≃ M2

V 2k3

〈∫
d3y C e−k2[gqpk̂+ψp(0)− i

ka(y/k)]
T
Σ(y/k)[gqpk̂+ψp(0)− i

ka(y/k)]+iy·[k̂+ψq(0)]/2
〉

≡ F1

V
k−3. (69)

Therefore, the integral d3q, as opposed to the momentum
integral in (67), is not compensated by any function that
scales like k−3, so it is this integration that yields the k−3

scaling, which emerges from q ∼ k−1 at the stationary
point. The exponent in equation (69) is order unity in
the limit k → ∞, because Σ ∼ y2/k2, and also because
a/k is at most order unity,10 whence the y integral is a
Gaussian integral, and the entire factor multiplying k−3

in equation (69), denoted by F1/V , is of order unity.

Thus, we have established that for collisionless, cold
dark matter in the non-relativistic limit, the asymptotic
behaviour of the power spectrum as k → ∞ is dominated
by the contribution of the saddle point at q, p ∼ k−1.
This yields P (k) ∼ k−3, with an order-unity coefficient;
that this coefficient is non-zero follows from the qualita-
tive argument of §II.

10 The exponent might depend on k̂, the direction of k, before being
ensemble-averaged.

IV. DISCUSSION

A. The importance of being cold

The k−d power spectrum arose from a turbulent cas-
cade in phase-space, where the gravitational field was
treated as a smooth field—this is an analogue of Batch-
elor turbulence in hydrodynamics [49], where a tracer is
advected by a large-scale, smooth velocity field. A crucial
step in the derivation of the source term in §II E was that
the source was

∫
dds Ŝ ∼ const, at v−1

rms ≪ sc(k), s ≪
v−1
th , i.e., that it accumulated when integrated over k,

to give εkd/τg. This was also necessary in §III, where
the initial conditions were special to cold dark matter,
with the particular functional form of the CN

pp matrix,

Σ ∼ Aq2, reflecting the fact that if two particles start
out at exactly the same spatial position, they will remain
together forever.

When the system is not cold, these assumptions fail.
Indeed, the source term would not accumulate when in-
tegrated over k and s up to small, non-linear scales,
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because at svth ≫ 1 and sc(k)vth ≫ 1, there is no
instability to drive the collapse, so one would expect∫∫

Ŝdkds = const.

The coldness of the system has two implications: first,
it means that locally in phase-space, the distribution
function is always a stream, and therefore, locally, the
Raychaudhuri equation (5) applies. This, in turn, means
that the stream is unstable to gravitational collapse, with
the collapse time scale τg ∼ τJ, precisely the time scale
that enters in equation (45). Secondly, this time scale is
scale-independent, so the contributions to the integrated
source (34) add up constructively. Together, these two
features imply that the source has the form (41); this

then enables the estimate of F̂ in §II F.

While in a collisionless setting, vth would not change
with time,11 in reality finite-N effects do increase vth.
Additionally, baryons would influence the matter power
spectrum significantly on small scales, probably leading
to a deviation from the power-law scalings found here.
The approach used in this paper does not apply once
interactions with baryons are included, and this is its
main limitation. Another limitation is that it only applies
in-so-far as dark matter behaves as a cold, classical phase-
space fluid—other dark-matter candidates might follow
different scalings, and we defer this to future work.

Were it not for baryons, a full theory of the constituent
particle of dark matter should predict both the initial
value of vth and the functional form of the effective col-
lision operator; this should allow one to find how C2

changes with time, and thence how vth evolves. Measur-
ing the break in the dark-matter power spectrum—the
transition from k−3 to a different power law (in d = 1,
to a k−2 scaling, as in figure 4)—would hypothetically
allow one to find the present-day value of vth, which is
directly connected to the nature of dark matter (if in-
deed it held that uν ≪ vth, where the collisional ve-
locity scale uν is defined in appendix A). For example,
for WIMPs, which decouple from the photons when non-
relativistic, one would have

vth(z) = c
T (z)

Tkd

√
2kBTkd
mc2

(70)

≈ 3.3× 10−12c(1 + z)

[
10 MeV

Tkd

]1/2 [
GeV

m

]1/2
,

where T (z) is the photon temperature at redshift z and
Tkd is the kinetic-decoupling temperature [21, 22, 61].
This is far too small to be observed practically, and more-

11 Because C2 ∼ ∥f∥2∞ vdthV , and both C2 and ∥f∥∞ are conserved

(in fact, one can define vth ≡ C
1/d
2 ∥f∥−2/d

∞ V −1/d/
√
π, as a

measure of the thinness of the distribution). There is of course
a change in ∥f∥∞ = max f because of the Universe’s expansion,
but this is very slow for the large-k limit, where k ≫ H/c.

over, it corresponds to (cf. appendix C)

kc(v
−1
th ) ∼ δ

1/2
typ

H

vth
(71)

≈ 108h(z)

1 + z
δ
1/2
typ Mpc−1

[ m

GeV

]1/2 [ Tkd
10 MeV

]1/2
,

where δtyp is a typical over-density and the Hubble con-

stant is H(z) = 100h(z) km s−1 Mpc−1 (this value is
of the same order as the free-streaming scale [21] for
δtyp ∼ 1).

B. Some like it hot: similarities with plasma
physics

A phase-space Batchelor-type cascade was recently
proposed to be the universal régime of (plasma) Vlasov–
Poisson turbulence at Debye and sub-Debye scales [32,
33]. This has been verified numerically in 1D simula-
tions of turbulence driven by external forcing [33] and
the two-stream instability [62]. Like in the cold-dark-
matter turbulence presented here, the (electric) field fluc-
tuations are spatially smooth, so the phase-space mixing
of the distribution function is dominated by the outer-
scale fields. However, unlike cold-dark-matter turbu-
lence, which is sourced at every Jeans-unstable scale, the
cascade in the plasma case has a constant flux of C2, be-
cause C2 is only sourced at the outer scale; this changes
the scalings of the power spectrum and of the field spec-
trum. This situation is analogous to the gravitational
phase-space turbulence at s ≫ v−1

th that appears in the
simulations presented in figure 5. We will investigate this
régime further in future work.

C. Implications for dark-matter haloes

The P (k) ∝ k−3 scaling (in 3D) derived here for
the non-linear power spectrum sheds some light on
universal properties of dark matter haloes. Within
the hierarchical-clustering paradigm [63], the small-scale
limit of the power spectrum is dominated by the one-halo
term,

P1h(k) =

∫
dM

dn

dM
[R3δû(kR)]2, (72)

where dn/dM is the halo mass function, R(M) ≡
R200(M)/c(M), δ is the amplitude of the halo density
profile, c(M) is the halo’s concentration, R200 is the ra-
dius where the density is 200 times the critical density of
the Universe, and û is the Fourier transform of the nor-
malised density profile u(x/R) [64]. If we define ∇c ≡
−d ln c/d lnM and ∇n ≡ d ln (dn/dM) /d lnM , both
at M → 0, then, as k → ∞

P1h(k) ∼ kγ , γ = −3
3 +∇n

1 + 3∇c
, (73)
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provided the halo density profile û decreases sufficiently
fast with its argument. Setting γ = −3, as would be
required by our result, yields a relation between the uni-
versal concentration-to-mass relation and the halo mass
function for cold dark matter:

∇n = 3∇c − 2; (74)

this constrains semi-analytic prescriptions for halo mass-
functions [65].

V. SUMMARY

In this paper we have described a physical mechanism
that produces the k−d asymptotic scaling of the dark-
matter power spectrum naturally. This was done in two
ways: by expressing P (k) as a phase-space integral and
analysing it with a stationary-phase method (§III), and
via a phenomenological study of a critically balanced
phase-space cascade, akin to Batchelor turbulence, for
a cold, collisionless, self-gravitating system (§II). Both
methods are phase-space based, and so remain valid even
after streams cross. The fact that the phase-space dis-
tribution function is cold (i.e. that it is only non-zero
in a d-dimensional sub-manifold of phase-space) was cru-
cial to both approaches. Gravitational collapse sources
a cascade of the quadratic Casimir invariant. The cas-
cade is sustained by the joint action of phase mixing and
tidal forces (by smooth fields), which together transfer
phase-space structure into ever smaller scales. The bal-
ance between linear free streaming and tidal forces also
appears in the saddle-point argument of §III. Usually in
turbulent systems there exists an inertial range of scales
[66] where there is a constant-flux cascade of an invari-

ant. Gravitational turbulence is different in that the flux
is not constant over the range of scales of interest, and
yet there is a universal scaling régime of the phase-space
power spectrum.

The validity of our approach is supported by 1D
Vlasov–Poisson simulations, which confirm our theoreti-
cal predictions.

Our determination of the small-scale asymptotics of
the dark-matter power spectrum may allow for a non-
trivial test of effective field theories of the large scales,
either by imposing these asymptotics on them, or by us-
ing F̂ found here as a closure for these theories. We
intend to investigate these possibilities in future work.
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Appendix A: Simulation methods

Here we describe the details of the Vlasov–Poisson simulations whose results were shown in §II and figures 1–5. The
simulations were conducted using the Gkeyll code12, which is an Eulerian solver in phase-space, originally designed for
the Vlasov-Maxwell system. Gkeyll uses a discontinuous Galerkin algorithm to compute distribution functions [39].
We set the vacuum permittivity ε0 = −1, which turns electrostatic interactions into gravitational ones—and, for unit
particle charges, it is equivalent to choosing units such that 4πG = 1. Our simulations were 1D in position space (so
the phase-space is 2D), with periodic spatial boundary conditions; the units of length were such that the box size was
L = 2π. We always took the particle mass to be unity, which implied that the system’s total mass was normalised to
M = 2π. These three choices specify the units for the simulations, and are equivalent to choosing τ0 = k0 = v0 = 1
(these are defined in §IIA). Thus, the outer scale knl ∼ k0 is of order unity.
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1. Initial conditions

We simulated a single-species distribution function, with the initial condition (4), where we chose vth = 0.005v0 or
0.01v0, and

ρin(x)
L

M
= 1−

5∑
n=1

an
kn

sin (knx+ ϕn) , (A1)

uin(x) = v0

5∑
n=1

bn cos (knx+ ϕn) , (A2)

where ϕn ∈ [0, 2π] are random phases, an/k0 were uniformly sampled from the interval [0, 0.2], and kn = k0Un,
with Un ∈ {1, 2, . . . , 10}—a uniformly distributed random integer. For runs with one initial stream (figure 5), bn =
an/k0, while for runs with three initial streams (figure 1), we set bn = 0.05an/k0 and tripled the initial conditions (4)
by shifting uin(x) by ±2v0 and duplicating for two additional streams. We ensured that the resolution was sufficiently
fine for a Maxwellian of width vth still to be resolved: we used an Nx ×Nv phase-space grid with Nx = Nv = 4032
for the single-stream initial condition and Nx = Nv = 7680 for the multi-stream one.

Because of numerical errors, f can become slightly negative in very small and isolated areas. This is because the
discontinuous Galerkin algorithm that Gkeyll uses is not positivity-preserving, and errors arise from over-shooting due
to large derivatives. These problems are somewhat alleviated by the small collision operator (see appendix A2), which
smooths large velocity derivatives. In any case, these regions do not cause the simulation to become unstable because
they are isolated and |f | is still very small there; the total mass occupied by negative f is

∫∫
fΘ(−f)dxdv < 10−5M

for the simulation in figure 1 and < 0.02M for figure 5. Therefore, this does not invalidate any of our conclusions in
this paper, and we have set f 7→ fΘ(f) for the purpose of plotting figures 1 and 5.

2. Collisions

One would like to run collisionless simulations, but the finite resolution of any numerical representation of phase-
space induces an unavoidable effective collisionality due to the grid. Real dark matter also has a finite number of
particles—and finite-N effects also induce a effective collisionality. To control the cut-off scale in velocity space and
the dissipation of C2, we added a weak collision operator (∂f/∂t)c ∝ ν, where ν is the collision frequency. The collision
operator used was the Dougherty collision operator—a type of Fokker-Planck operator in velocity space [67, 68]:(

∂f

∂t

)
c

= ν
∂

∂v

[
(v − u) f + v2t

∂f

∂v

]
, (A3)

where u(x) is first velocity moment of f and v2t ≡
∫
dv v2f/ρ. Details (and the definition of vt) can be found in [68],

which describes the implementation of equation (A3) in Gkeyll. The inevitability of some collisions—whether due to
the grid, finite-N effects, or a collision operator—implies the existence of another scale in the problem. We used the
Dorland number [69] Do ≡ (ντ0)

−1 = 106 for all runs. The collision time scale is [32, 68]

τν ∼ 1

νs2v2rms

, (A4)

where v2rms is the second velocity cumulant. The velocity scale where collisions become competitive with the cascade
rate (τν ∼ τg) is, therefore,

uν =
√
ντgvrms. (A5)

By critical balance (see §II C), this also gives a length scale

lν =
√
ντgL ∼ √

ντgk
−1
nl , (A6)

which is the collisional cut-off in position space. For a sufficiently small ν, one can have13

knl ≪ k ≪ kc(v
−1
th ) ≪ l−1

ν , (A7)

v−1
rms ≪ s≪ v−1

th ≪ u−1
ν , (A8)

13 In reality, it might be that uν ≳ vth, for both parameters depend
sensitively on the nature of the constituent particle(s) of dark

matter. But as long as 1/s is larger than both, none of the
conclusions of the this paper are invalidated by this possibility.
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where kc(s) is defined by equation (29). While this hierarchy justifies neglecting collisions in this paper, as phase-
space structure cascades to ever smaller scales by (18), the collisional scales, where it is erased, are eventually reached

[32, 33]. Likewise, in reality, a particle-noise floor F̂ ≈ M2/N (which is not present in our simulations) is eventually
reached, too. Determining whether this occurs on scales smaller or larger than lν is deferred to future work [cf. 33].

3. Phase-space power spectra

In the 1D set-up described above, our prediction (55) for the phase-space power spectrum becomes

F̂ (k, s) ∼

{
F1k

−1, if max {knl, kc(s)} ≪ k ≪ min
{
kc(v

−1
th ), l−1

ν

}
,

F2s
−1, if max

{
v−1
rms, sc(k)

}
≪ s≪ min

{
v−1
th , u

−1
ν

}
.

(A9)

We are not concerned here with the asymptotics of the power spectrum F̂ , defined in equation (10), at values of s
and k above v−1

th and kc(v
−1
th ), respectively, but below the collisional cut-offs u−1

ν and l−1
ν (see equations (A5) and

(A6)). In this region, gravitational collapse halts by equation (36), but if one extrapolates the findings of [33]—who
explored turbulence in electrostatic plasmas where vth is of order unity—from electrostatics to gravity (ignoring any
possible differences), then one should have, assuming vth ≫ uν ,

F̂ (k, s) ∼


F1k

−1, if max {knl, kc(s)} ≪ k ≪ kc(v
−1
th ),

F2s
−1, if max

{
v−1
rms, sc(k)

}
≪ s≪ v−1

th ,

F3k
−2, if max

{
knl, kc(s), kc(v

−1
th )
}
≪ k ≪ l−1

ν ,

F4s
−2, if max

{
v−1
rms, sc(k), v

−1
th

}
≪ s≪ u−1

ν .

(A10)

The spectrum is truncated exponentially at k > l−1
ν or s > u−1

ν (or submerged into particle noise as discussed in [33]).
Figure 1 shows an example of the time evolution of a system that started with three streams with vth = 0.005v0

and had Do = 106. This corresponds to uν ∼ 10−3v0, so scales are separated in the way that we have assumed. The
grid size is Nx = Nv = 7680 and the velocity box size is 12v0, so the Nyquist velocity scale is sNy ≈ 2011v−1

0 . Figure
1 shows that the streams collapse quickly, by rotating and twisting in phase-space. In figure 3, we show the evolution
of the power spectra for this simulation.

Appendix B: Estimates for the source

In this appendix, we show that the scaling (41) of the source term, argued for physically in §II E 2, is a posteriori
consistent with the phase-space power spectrum in equation (55) (derived from it) and the formal definition (19) of
the source term.

Consider the integral (35). As argued in §II E 2, the magnitude of the contribution of
∫
Ŝ(k, s)dds at each scale k is

proportional to the inverse collapse time τ−1
g , which gave Fk ∼ εkd/τg. Let us verify this by examining the scalings

of each term in equation (19) with k and s. By critical balance (§II C) and equations (19) and (35), the integrated
source is

Fk = (2π)−2d

∫ k

ddk′
∫

dds Ŝ(k′, s) ∼ V

τnl

∫ k

ddk′
∫

dds
〈∣∣∣f̂(s)f̂∗(k′, s)

∣∣∣〉 , (B1)

where we have already carried out the Fourier transform in equation (19). Crucially, the (real-space) product g·∂/∂v ∼
τ−1
nl in (19) is proportional to the (inverse) collapse time, τ−1

g , a constant (cf. §§II C and II E 2). Furthermore, its sign
must also be independent of scale: as long as max {s, sc(k)} vth ≪ 1, nothing in equation (36) depends on scale, since
in this limit, the collapse is independent of scale.

To estimate (B1), we use the following estimates:∣∣∣f̂∗(k′, s)
∣∣∣2 ∼ F̂ (k′, s), (B2)∣∣∣f̂(s)∣∣∣2 ∼ 1

V 2
F̂ (0, s); (B3)

these follow from equations (6) and (10). At each k′, the s integral in (B1) has one contribution from 0 < s < sc(k
′),

where we can approximate F̂ (k′, s) ∼ F̂ (k′, 0), for k′ ≪ k, by critical balance; for the other contribution, from
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s≫ sc(k
′), we approximate F̂ (k′, s) ∼ F̂ (0, s). Hence

Fk ∼ 1

τg

∫ k

ddk′
∫ sc(k

′)

dds

√
F̂ (k′, 0)F̂ (0, s) +

1

τg

∫ k

ddk′
∫
sc(k′)

dds F̂ (0, s). (B4)

Let us parameterise, as in equation (43), F̂ (k, 0) ∼ F1k
γ and F̂ (0, s) ∼ F2s

δ, where both γ and δ are negative; critical
balance (equations (26) and (29)) gives γ = δ, as indeed found in §II F. Then, the integrations result in

Fk ∼
√
F1F2

τgκ(d+δ)/2
k2d+(γ+δ)/2 +

F2

τgκd+δ
k2d+δ, (B5)

which scales like k2d+δ/2+max{γ,δ}/2. If max {γ, δ} = −d, then Fk ∝ kd. A similar calculation yields the analogous
result Fs ∝ sd at large s (Fs is defined in equation (34)).
The scaling Fk ∝ kd is the only one consistent with sourcing by gravitational collapse (§II E 2). But we know from

equation (55) and from the results of §III that the density power spectrum of cold dark matter assumes its k−d shape
after roughly one critical-balance time, so indeed max {γ, δ} = −d, and Fk ∝ kd is consistent with equations (19) and

(55), as required. This power spectrum in turn keeps producing a source with just the right scaling, to ensure that F̂

retains the same k−d power law. This is an a posteriori justification for
∫∫

Ŝ ∼ εkd/τg.

Appendix C: Einstein-de-Sitter universe

Although the analysis of §II, resulting in the prediction (55) for the phase-space power spectrum, is valid for ΛCDM,
and in general for any cosmology where there is a separation of scales between H/c and the non-linear scale knl, in the
special case of an Einstein-de-Sitter (EdS) cosmology, there exists a scale invariance (see, e.g., [1, 70]) that provides
additional insight, which we sketch in this appendix. This allows us to propose a global analogue of the local analysis
of the main text. We focus on the case of d = 3 for simplicity.

In an EdS space-time, the Vlasov–Poisson system is invariant under the transformation

(t,x,v, f) 7→ (λt, λζx, λζ−1/3v, λ3ζ+1f), (C1)

where ζ is fixed by assuming the scaling of the density power spectrum. This means that for every (inverse) length
scale k, there exists a (cosmic) time scale t ∝ k1/ζ . Thus, one obtains a (conformal) time scale, which is just the
collapse conformal time in the standard spherical-collapse model,

τg(k) ≡
2

H0

(
π

2H0t0

)1/3(
3

5δrms(k)

)1/2

, (C2)

where H0 and t0 are the present-day Hubble constant and cosmic time, and δrms(k) is the root-mean-square amplitude
of the dark-matter density fluctuation at scale k, normalised by the EdS growth factor D+ (tinitial) = a (tinitial). The
time scale in equation (C2) turns out to be nothing but the standard gravitational time scale τg ∼ 1/

√
Gρ, where

ρ ∼ δrmsρcrit, with the critical density defined by ρcrit = 3H2
0/(8πG). Relating δrms(k) to the over-density power

spectrum Pδ(k) = P0(k/kp)
n for some constant kp, via δrms(k) =

√
k3Pδ(k), yields

τg ∼ 2
√
3√

5H0

(
π

2H0t0

)1/3( knp
P0k3+n

)1/4

. (C3)

By critical balance (§II C), the collapse time scale τg and the linear, phase-mixing time τl, must be the same, whence

sc(k) ∝ k(1−n)/4. (C4)

Consequently, the analogue of equation (48) here would imply

k4+γ ∼ sc(k). (C5)

Using equation (C3), one concludes from the analogue of equation (48), that the exponent γ of the density power
spectrum in (43) is γ = −(15 + n)/4. In a steady state, the power spectrum must be invariant under the collapse
process, and so in a self-sustaining scenario, γ = n, which is solved by n = −3. This is unsurprising, because an EdS
space-time is just a matter-dominated FLRW space-time; as this paper is focused on small scales, locally, everything
is matter dominated.
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Appendix D: Initial momentum correlations

The purpose of this appendix is to prove, for §III, that Σ ∼ Aq2 as q → 0, and that Σa = O(q), which are defined
in equation (58). What follows holds for vth = 0.
Consider equation (58). Since 2p1 = p + 2P and 2p2 = 2P − p, the part involving a comes solely from the

cross-correlations between p1, p2 and (p3, . . . ,pN ), viz.,

pT
1 (C

N
pp)

−1
1npn + pT

2 (C
N
pp)

−1
2npn = P

[
(CN

pp)
−1
1n + (CN

pp)
−1
2n

]
pn +

1

2
p
[
(CN

pp)
−1
1n − (CN

pp)
−1
2n

]
pn

+P
[
(CN

pp)
−1
11 − (CN

pp)
−1
22

]
p+ 2P

[
(CN

pp)
−1
11 + (CN

pp)
−1
21 + (CN

pp)
−1
12 + (CN

pp)
−1
22

]
P,

(D1)

where (CN
pp)

−1
mn specifies the sub-matrix of (CN

pp)
−1 that pertains to particles m and n, and the Einstein summation

convention is used.
Now, (CN

pp)
−1
mn is a function of the positions of the particles only. When q ≡ |q1 − q2| → 0, q1 and q2 both tend

to Q = (q1 + q2) /2, and, by the indistinguishability of the constituent particles,

(CN
pp)

−1
1n (q1 = Q,q2 = Q,q3, . . . ,qN ) = (CN

pp)
−1
2n (q1 = Q,q2 = Q,q3, . . . ,qN ), (D2)

(CN
pp)

−1
11 (q1 = Q,q2 = Q,q3, . . . ,qN ) = (CN

pp)
−1
22 (q1 = Q,q2 = Q,q3, . . . ,qN ). (D3)

Consequently, for q → 0 and finite Q,q3, . . . ,qN ,P,p3, . . . ,pN , we have[
(CN

pp)
−1
1n − (CN

pp)
−1
2n

]
= O(q), (D4)[

(CN
pp)

−1
11 − (CN

pp)
−1
22

]
= O(q). (D5)

Therefore, in the limit q → 0, the matrix (CN
pp)

−1, qua a linear operator in momentum space, splits into a block

matrix in the basis (p,P,p3, . . . ,pN ), with one block for p and another for (P,p3, . . . ,pN ). Hence its inverse CN
pp is

also a block matrix in this basis. Namely,

CN
pp =

 (CN
pp)11 + (CN

pp)22 − (CN
pp)12 − (CN

pp)21 0 (CN
pp)1n − (CN

pp)2n

0 (CN
pp)11 + (CN

pp)22 + (CN
pp)12 + (CN

pp)21 (CN
pp)1n + (CN

pp)2n
(CN

pp)1n − (CN
pp)2n (CN

pp)1n + (CN
pp)2n (CN

pp)nm

 . (D6)

The matrix Σ−1 is the top-left block of (CN
pp)

−1:

Σ =
[
(CN

pp)11 + (CN
pp)22 − (CN

pp)12 − (CN
pp)21

]
−
[
(CN

pp)1n − (CN
pp)2n

]
(CN

pp)
−1
nm

[
(CN

pp)1m − (CN
pp)2m

]
. (D7)

This, in conjunction with results on the initial correlation sub-matrix of CN
pp pertaining to particles 1 and 2 [34, 57, 58]

to the effect that when vth = 0, (CN
pp)11+(CN

pp)22− (CN
pp)12− (CN

pp)21 = O(q2) (with the coefficient determined by the

cosmology, which we take to be standard ΛCDM), implies that indeed Σ ∼ Aq2 as q → 0. Besides, the components
ak of a satisfy

ak ∝ −
(
Σ−1

)
kn

[
(CN

pp)1n − (CN
pp)2n

]
(CN

pp)
−1
nmpm, (D8)

so

Σa ∼
[
(CN

pp)1n − (CN
pp)2n

]
= O(q). (D9)

Additionally, the results of [34, §3.1.2], in conjunction with equation (D6), imply that the entire CN
pp matrix tends

to a constant as q → ∞, which means that Σ, a and B become O(1) in that limit, too.
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