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The matter power-spectrum, P (k), is one of the fundamental quantities in the study of large-scale
structure in cosmology. Here, we study its small-scale asymptotic limit, and show that for cold dark
matter, P (k) has a universal k−d asymptotic scaling with the wave-number k, for k ≫ knl, in d
spatial dimensions. We offer a theoretical explanation for this scaling, based on a non-perturbative
analysis of the system’s phase-space structure. Gravitational collapse is shown to drive a turbulent
phase-space cascade of the quadratic Casimir invariant, where linear and non-linear time scales
are balanced. A parallel is drawn to the phenomenon of Batchelor turbulence in hydrodynamics,
where large scales mix smaller ones via tides. We also derive the k−d scaling by expressing P (k)
as a phase-space integral in the framework of kinetic field theory, which is analysed by the saddle-
point method; the dominant critical points of this integral are precisely those where the time scales
are balanced. The coldness of the dark-matter distribution function—its non-vanishing only on a
3D sub-manifold of phase-space, underpins both approaches. The theory is accompanied by 1D
Vlasov-Poisson simulations, which confirm it.

I. INTRODUCTION

One of the basic observable quantities in large-scale
structure is the two-point correlation function of the over-
density field, whose Fourier transform is the power spec-
trum, P (k, t) [e.g., 1]. The two-point correlation function
is of fundamental importance, for it allows us to probe
theories of the early Universe, dark matter, inflation, and
to study gravity [1–4]. In this paper, we will explore the
small-scale asymptotic behaviour of P (k) (we omit the t
argument when it is not confusing to do so), in the limit
k ≫ knl, where the (inverse) non-linear scale knl is de-
fined by

∫∞
knl
Plin(k)k

2dk = 2π2δ2c [5], with δc denoting

the spherical-collapse threshold. The small-scale limit
of P (k) is theoretically important for the understand-
ing of the gravitational N -body problem in the large-N
limit [6], and the formation of large-scale structure, non-
linear clustering and self-similarity [1, 7], but also for the
understanding of the nature of dark matter and gravita-
tional back-reaction of small scales on large ones—both
relativistic [8] and in the context of the effective field the-
ory of large-scale structure [9] (for reviews and references
see, e.g., [5, 10, 11]) and the general bias expansion [2].
Even before modifying gravity, it is important to know
what non-linear phenomena occur in the standard the-
ory. Data from cosmological dark-matter-only simula-
tions are consistent with P (k, t) developing a k−d tail at
small scales [e.g., 12, fig. 6] in 3D, and in 1D, as shown
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in refs. [13, figure 6] or [14, figure 1] (cf. [15]). The
emergence of a power-law tail—and the simplicity of its
exponent—hints that a fundamental physical reason for
it must exist, ultimately stemming from the nature of the
gravitational interaction of cold dark matter. Here, we
will describe the mechanism that produces this asymp-
totic scaling, by studying the mass distribution in the
velocity space as well as in position space.

We restrict ourselves to the strictly collisionless case
where the particle mass m → 0, while the total particle
number N → ∞, so thatM ≡ Nm remains fixed (and so
does the volume). In this limit the phase-space distribu-
tion of particles is well-described by the Vlasov equation
[1, 13, 16–19]:1

∂f

∂η
+ v · ∂f

∂x
+ g · ∂f

∂v
= 0, (1)

where f is the distribution function (the one-point prob-
ability density in phase-space), η is the conformal time,
defined by dt = adη, where a is the scale-factor of
the background (which is taken to be a Friedmann-
Lemâıtre-Robertson-Walker space-time), x and v are the
co-moving position and velocity, and the gravitational
field g is self-consistently derived from Poisson’s equa-

1 The collisionless Vlasov equation, of course, ignores dissipation
via collisions (or equivalently, finite-N effects). However, we will
find that due to turbulence, such dissipation will inevitably be
accessed; this point will discussed further in §A2.
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tion

∇·g ≡ −∇2Φ = − 4πG

ad−2

[∫
f(x,v, η)ddv − adρm

]
, (2)

where ρm is the background matter density and Φ is the
gravitational potential. This system of equations applies
well on scales much smaller than the horizon, for particles
much slower than c. Henceforth, we will work in general
spatial dimensions d ∈ {1, 2, 3}. Dark matter is assumed
to be cold initially, with a thermal velocity vth → 0, such
that the initial gravitational potential energy is much
larger than the initial thermal energy (this assumption is
excellent for our Universe—see, e.g., [3, 20–25]). Clearly,
despite being cold, dark matter is inherently kinetic, and
cannot be described by merely fluid equations adequately
on non-linear scales, because these equations cease to be
valid after streams cross [e.g. 19, 26, 27].

Below we will derive the k ≫ knl limit of P (k) in two
complementary ways. First, we will study the problem in
phase-space, and show that the small-scale asymptotics
arise when the time scales involved in the Vlasov equa-
tion balance with each other in a particular way, to be
explained below. Two ingredients will comprise this ar-
gument: the balance of time scales, and the conservation
of the second Casimir invariant [28–32]

C2 ≡ 1

V

∫∫
f2ddxddv, (3)

where V is the spatial volume. This invariant is some-
times referred to as ‘enstrophy’, ‘phasestrophy’, or ‘f -
strophy’. The Vlasov equation conserves an infinite num-
ber of phase-space invariants—not only C2—but we will
use C2 here because it is directly related to the power-
spectrum (vide infra). We will show that the spectrum
can be predicted if small-scale structure is undestood as
resulting from a turbulent cascade of C2 from large scales
to small ones.

For the second approach, we use non-perturbative ki-
netic field theory (KFT) [for a review, see 33] for cosmic
structure formation in dark matter. Here, P (k) is ex-
pressed as an integral over the initial particle positions
and velocities (weighted by the initial-condition proba-
bility distribution) of the characteristic function of the
displacement field; this integral will have an explicit k-
dependence, and we will utilise this to perform an asymp-
totic saddle-point analysis.

The two approaches complement each other, both re-
lying on the same assumptions, but highlighting their
rôles in different ways. We remark that using phase-
space expressions ensures that the validity of our results
extends beyond the bounds of configuration-space-based
approaches, such as Lagrangian [15, 34, 35] or Eulerian
techniques [26]; in particular, it is regular at stream-
crossing, and accounts for free streaming automatically.
Indeed, as we already mentioned above, the inherently
kinetic phenomenon of multi-scale structure of the distri-
bution of dark matter, developing by virtue of a strongly

non-linear interaction, suggests that a type of turbulence
in phase-space is involved. In turbulent phase-space dy-
namics, there is a flux of C2 from large scales to small
ones [31], and we will show below that C2 cascades to
smaller scales by gravitational collapse here, too. As
early as [35] it was realised that the phenomena of grav-
itation and turbulence might be linked—here we make
the analogy precise and characterise this gravitational
turbulence.
The rest of this paper is organised as follows: in §II we

formulate the first approach, based on the Vlasov-Poisson
system, and show how the conept of a ‘phase-space cas-
cade’ can be used to derive the small-scale asymptotics of
the phase-space power-spectrum, from which P (k) may
be computed. In §III we derive the same asymptotic
scaling of P (k) again, but via a saddle-point analysis
of an integral expression for P (k). We test our theory
by comparing it with numerical Vlasov-Poisson simula-
tions throughout the paper. The main conclusions are
discussed in §IV and summarised in §V.

II. PHASE-SPACE TURBULENCE

We start by describing the initial condition—a single,
cold stream—and show what its evolution looks like, and
then derive the equation that governs the phase-space
Fourier transform of f in §II B. We will then analyse
the time scales involved in the Vlasov-Poisson system
in §II C, and show in §IID that a turbulent flux of C2

to smaller scales characterises the dynamics. To do that,
we will derive a transport equation for the integrand of
C2 with a source term; in §II E the latter will be found
to receive contributions from all larger scales, because
of the Jeans instability [36]. This in turn will allow us
to find the asymptotic scaling of P (k) in §II F. We will
present simulation results throughout this section, to test
the theory.

A. Cold streams

We assume that the system has an initial condition
consisting of a super-position of streams, each one of the
form:

f(η = 0,x,v) = fin(x,v) ≡
ρin(x)

(2πv2th)
d/2

e
− [v−uin(x)]2

2v2
th , (4)

where v2th ≪ min
{
u2in,

∫
|Φin| finddxddv

}
, where Φin is

derived from ρin; that is, the initial condition is very
cold—there is little thermal energy and it is negligible
in comparison with the gravitational potential energy
of the system or the kinetic energy of mean flows. ρin
and uin are typically Gaussian random fields [1, 2]. We
also choose the co-ordinates so that

∫
ρ(x)u(x)ddx = 0,

where ρ(x) is the density and ρu ≡
∫
vfddv. The ini-

tial distribution fin is essentially a single stream, and,
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in fact, its Maxwellian shape may be approximated by
a Dirac delta-function. The thermal speed vth is cho-
sen to be the smallest scale in the problem, so that the
entire analysis of this paper focuses on the limit where
svth ≪ 1, where s is the Fourier conjugate to velocity
(see §II B). The distribution function remains a collec-
tion of streams as it evolves in time, by Liouville’s the-
orem: locally almost everywhere in phase-space (in a
sufficiently small phase-space neighbourhood of almost
any point (x0,v0) where f ̸= 0), it can be written as
ρ(η,x)δD (v − u(η,x)) + O(vth), where δ

D is the Dirac
delta function; it remains so as long as collisions or finite-
N effects may be ignored.

To study the evolution of the initial condition (4), we
have conducted a suite of Vlasov-Poisson simulations in
1D on a Minkowski background (a(η) = 1), using the
Gkeyll code [37], which is originally a Vlasov solver for
kinetic plasmas; by setting the vacuum permittivity to
ε0 < 0 we can use the code to study gravity as opposed to
electrostatics. Details on the method and simulation set-
up may be found in appendix A. The simulation’s units
are chosen such that τ−2

0 ≡ 4πGM/L = 1 (unit of time),2

k0 ≡ 2π/L = 1 (unit of length) and v0 ≡ (k0τ0)
−1 = 1

(unit of speed), where L is the length of the simulation
‘box’ (with periodic boundary conditions) and M is the
total mass in the box.

The time-evolution of a cold system of three streams—
three copies of equation (4)—is displayed in figure 1. This
figure shows that each stream collapses quickly, by rotat-
ing and twisting in phase-space. Evidently, this motion
generates small-scale structure, which we consider to be
a type of turbulence in phase-space. As usual, in or-
der to characterise the turbulence and its spectrum of
fluctuations, one must identify which invariant quantity
cascades to small scales, what the cascade’s time scale is,
and also the flux of that invariant quantity [38]. We will
do so in §§IID, II C, and II E respectively.

That the turbulence is in phase-space and not merely
in position space is clear: already at t = 4τ0, the system
can no longer be described as a single stream almost ev-
erywhere, so standard cosmological perturbation theory
would already be inadequate, and the second velocity cu-

mulant vrms ≡
[∫

dv (v − u(x))
2
f(x, v)/ρ(x)

]1/2
is much

larger than vth, and is of order v0. However, in phase-
space, we see that the topology of a three single lines is
preserved—as one expects from Liouville’s theorem [e.g.,
39]. The large-s limit consists of 1 ≪ svrms.

The fact that the system is a collection of streams
implies that locally in phase-space, one can de-
scribe each stream with fluid equations: inserting
ρ(η,x)δD (v − u(η,x)) into the Vlasov equation gives
continuity and Euler equations, and the divergence of
the latter yields the Raychaudhuri equation [40] which
describes gravitational collapse under the Jeans instabil-
ity [19, 34, 36, 41–47]. Written in the frame of reference

that moves with a given stream, it reads

dθ

dη
+Hθ + θ2

3
+ σijσij = ∇ · g +

Σ

ρ
+ 2ωiω

i, (5)

where H is the conformal Hubble constant, θ ≡ ∂iu
i

is the stream’s divergence, ω ≡ ∇ × u/2 is its vortic-
ity, σij ≡ (∂iuj + ∂jui − 2θδij/3) /2 is its shear, d/dη
is the Lagrangian derivative along the stream, Σ/ρ is a
pressure-related term that is ∝ v2th, and g is the total
gravitational field felt by the stream. We will use equa-
tion (5) below to gauge the time scale of gravitational
collapse, τc, which is the time scale for the decrease of θ.

B. Batchelor approximation

We need to characterise a turbulence, which is inher-
ently a multi-scale process, so it is more convenient to
study equations (1)-(2) in Fourier space.

1. Fourier transform

Let is define the Fourier transform by (marked by a
circumflex)

f̂(k, s) ≡
∫∫

f(x,v)eik·x−is·vddxddv, (6)

and similarly for other functions of (x,v). For d > 1, we
denote k ≡ |k|, s ≡ |s|, etc. Under this Fourier transform
the Vlasov-Poisson system becomes

∂f̂

∂η
+ k · ∂f̂

∂s
+ is ·

∫
ddk′

(2π)d
ĝ(k′)f̂(k− k′, s) = 0, (7)

ak2Φ̂ = −4πGρ̂, (8)

where ρ̂ is the Fourier-transformed density. The second
Casimir invariant, defined by equation (3), is given in
Fourier space by Parseval’s theorem:

C2 =
1

(2π)2dV

∫∫
|f̂ |2ddkdds. (9)

The integrand |f̂2| is directly related to the power-
spectrum: let the phase-space power spectrum be

F̂ (k, s) ≡ ⟨|f̂ |2⟩, (10)

where ⟨·⟩ is an ensemble average over many random re-
alisations of the initial conditions. The density power
spectrum is then P (k) = F̂ (k, 0).

2. Flux of C2

Let us now see how the integrand of the second Casimir
invariant in equation (9) evolves: multiplying equa-

tion (7) by f̂∗ and taking the real part, we find
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FIG. 1. Colour plots of the distribution function showing the time evolution of three cold streams. See text and appendix A
for details.
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∂|f̂ |2

∂η
+ k · ∂|f̂ |

2

∂s
+ is ·

∫
ddk′

(2π)d

[
ĝ(k′)f̂∗(k, s)f̂(k− k′, s)− ĝ∗(k′)f̂(k, s)f̂∗(k− k′, s)

]
= 0. (11)

To proceed, we need to assume that g is a smooth field: let δgr be the amplitude of a typical fluctuation in g on
scales r = 1/k and smaller, viz.

δg2r ≡
∫
k′r>1

ddk′

(2π)d
|ĝ(k′)|2. (12)

Integrating equation (11) over all k and s yields the conservation of C2, as it should. We take g to be a sufficiently
continuous field, so that for a sufficiently large k (small r), δgr ∼ κrλ + h.o.t., with Hölder exponent λ ≤ 1, and κ a
coefficient. A smooth gravitational field has λ = 1, because one may Taylor-expand g, meaning that the fluctuations
are dominated by tidal forces (and κ has dimensions of [time]−2).3 We show in appendix B that if one were to
assume λ < 1 in d ≤ 3 spatial dimensions and repeat the analysis of §II, one would find a power spectrum inconsistent
with equation (2) (cf. [32]), whence λ = 1.

Let us now take the k → ∞ limit of equation (11). Then, for a smooth gravitational field (λ = 1), the last term on
the left-hand side is dominated by two contributions: (i) k′ ≪ k and (ii) |k− k′| ≪ k. These are sometimes referred

to as ‘squeezed’ triangles, while case (i) is also known as the Batchelor limit [31, 48, 49]. Taylor-expanding f̂(k−k′, s)
in the Batchelor limit turns the non-linear term in (11) into

is ·
∫

ddk′

(2π)d

[
ĝ(k′)f̂∗(k, s)

(
f̂(k, s)− ∂f̂

∂ki
qi

)
− ĝ∗(k′)f̂(k, s)

(
f̂∗(k, s)− ∂f̂∗

∂ki
k′i

)]
+ h.o.t.

≃ −i

∫
ddk′

(2π)d
sj

[
ĝj(k

′)k′if̂∗(k, s)
∂f̂

∂ki
− ĝ∗j (k

′)k′if̂(k, s)
∂f̂∗

∂ki

]

= −i

∫
ddk′

(2π)d
sj ĝj(k

′)k′i

[
f̂∗(k, s)

∂f̂

∂ki
+ f̂(k, s)

∂f̂∗

∂ki

]
≡ −isjΦi

j

∂|f̂ |2

∂ki
. (13)

The transition from the first line to the second in (13) is correct because the leading-order terms are proportional to∫
ddk′ĝ(k′) = 0, in the centre-of-mass frame.

Thus, the non-linear term reduces to a tidal inter-
action, and it encapsulates the idea that on a given
small scale, corresponding to wave-number k, the dom-
inant effect of the gravitational field is nothing but the
tidal forces: the distribution function f at small scales
(large k) is distorted by the gravitational (tidal) field
at the same (large) energy-containing scale—the matrix
Φi

j = −iδin∂n∂jΦ is the Hessian matrix of the gravita-
tional potential, i.e. the tidal matrix.

3. Ensemble average

We now have

∂|f̂ |2

∂η
+ k · ∂|f̂ |

2

∂s
− isjΦi

j

∂|f̂ |2

∂ki
= −(ii), (14)

2 Assuming the Poisson equation (2) implies that G has different
dimensions in 1D from 3D.

3 The case λ > 1 is also smooth, but highly atypical, where the
tidal forces vanish; while this could happen in isolated points
with exactly zero over-density, we ignore it here.

where (ii) represents the last term of equation (11) in the
limit (ii), i.e. |k− k′| ≪ k. This equation is a transport
equation in Fourier space, with a source −(ii). Taking
the average of equation (14) yields an evolution equation

for the power spectrum F̂ :

∂F̂

∂η
+ k · ∂F̂

∂s
− isj

∂

∂ki

〈
Φi

j |f̂ |2
〉
= Ŝ, (15)

where

Ŝ =

∫∫
ddx1d

dv1d
dx2d

dv2 eik·x−is·v

×
〈
f(x2,v2) [g(x1)− g(x2)] ·

∂f(v1)

∂v

〉
,

(16)

where we have shortened f ≡
∫
fddx/V , and x = x1−x2,

v = v1 − v2. We will estimate Ŝ in §II E below.

The three-point correlation function
〈
Φi

j |f̂ |2
〉
is com-

posed of Φi
j , which is by construction a large-scale quan-

tity, multiplied by |f̂ |2, which depends on k. We contend
that, as Φi

j varies only on large scales, it will vary much

less from one ensemble realisation to another than |f̂ |2.
Furthermore, the non-linear term in the Vlasov equa-
tion affects the evolution more in over-dense regions, for
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it remains small in under-dense ones; the realisations
where x = 0 is a Jeans-unstable over-dense region are
therefore those that dominate this ensemble average, so
i tr Φi

j > 0, and generically (in d > 1) iΦi
j has both posi-

tive and negative eigenvalues.4

The time scales appearing on the left-hand side of
equation (15) are the advection (linear) time scale asso-
ciated with k · ∂

∂s , and the non-linear (gravitational) time

scale associated with sjΦi
j

∂
∂ki ∼ s δgr. We will discuss

these time scales presently in §II C. Then, §IID describes
the left-hand side of (15), while §II E describes the right-
hand side.

C. Critical balance

There are two (conformal) time scales in the Vlasov
equation (1): the linear time scale, τp ∼ r/δv, and the
non-linear time scale τg ∼ δv/δgr, where δgr is defined
in equation (12) and δv is a velocity-difference scale. In
the Fourier-transformed Vlasov equation (7) the linear
(or phase-mixing) time scale is

τp ≡ s

k
(17)

whereas the non-linear (gravitational) time scale is

τg ≡ 1

s δgr
, (18)

with r = 1/k. In the Batchelor approximation (14), the
non-linear time scale is τ−1

g = s
∥∥Φi

j

∥∥ /k, which is the
same as (18) (up to an order-unity constant).

In the highly non-linear régime, these two time scales
must balance each other: if τp were much shorter than
τg, so that only the first two terms of equation (7) dom-
inated, phase mixing would drive velocity gradients up
until τg shrank to the same order of magnitude. The
converse is also true: if τg were much smaller, then grav-
itational collapse would drive spatial gradients of f up,
until τp & τg matched. This so-called critical balance
may be thought of as a type of dominant-balance asymp-
totic argument for the Vlasov equation, where one allows
the system enough time to establish this balance (see for
instance [31, 32, 50–52] for examples of critical balance
in various areas of physics).

Critical balance (setting τp ∼ τg with δgr ∼ κr as
expected for a smooth field) implies that for a given
length-scale r = 1/k, there exists a corresponding (in-
verse) velocity-scale

sc(k) ≡
k√
κ
. (19)

4 The existence of a positive eigenvalue is guaranteed by Poisson’s
equation.

Likewise, for a given s we define

kc(s) ≡
√
κs. (20)

Additionally, if the two time scales are equal, their shared
value defines a so-called critical-balance time.
The argument that the two time scales must bal-

ance applies only to modes well inside the horizon, such
that k ≫ H/c (where H is the conformal Hubble con-
stant): the conformal time in any asymptotically de-
Sitter cosmology (i.e. one with a positive cosmological
constant) is bounded from above by some value ηmax [53].
Therefore, for modes with k too small, linear phase mix-
ing can only generate velocity gradients up to smax ≃
kηmax. If the amplitude of f̂(k, smax) is not large enough
for the non-linear term to become important, then the
evolution of such a mode will always be primarily lin-
ear. Here we are interested in the k → ∞ limit, so
it is safe to ignore this nuance. Additionally, due to
the finite age of the Universe and hierarchical structure
formation, the decrease of τg until it matches τp might
not have happened yet for all values of k, as structures
on the largest scales have yet to collapse. Again, this
does not affect the k → ∞ limit, and we may simply
take k ≫ max {knl,H/c}. In a sense, from the point of
view of the turbulence discussed below, max {knl,H/c}
serves as the ‘outer scale’ of the system.

D. Phase-space cascade

Let us now see what kind of flow in (k, s) space is

engendered by equation (15), ignoring Ŝ until §II E: the
positive eigenvalues of iΦi

j will drive a rotation in (k, s),
where small-scale velocity structure interchanges with
small-scale spatial structure, while the positive eigen-
values will drive a flow of both to ever smaller scales.
In fact, one can analyse equation (14) directly—before
ensemble-averaging—while still ignoring the right-hand-
side. As Φi

j generically depends on time, this analysis is

true locally in time (and space, on scales ≲ k−1), but by
critical balance, the long mode Φi

j cannot vary on a time-
scale shorter than the critical-balance time. We therefore
approximate it as constant (in which case there are an-
alytical solutions), but the qualitative features described
here—namely, a rotation in (k, s) and a flow to larger
values—remain true for a time-dependent Φi

j .

Consider a positive eigenvalue of Φi
j . If s+ is its cor-

responding eigenvector, then for s ∥ s+, equation (14)
simply reduces to a transport equation under the action
of a harmonic oscillator potential, i.e. a rotation in the
(k, s) space. This ensures that the large-s structure in
the initial condition is transported to large k, and vice
versa. The negative eigenvalues ensure that there is a
flow to ever smaller scales, because then the solution is a
linear combination of hyperbolic functions (cf. [32]).

In 1D, it would appear näıvely that there is only phase-
space rotation when x = 0 is over-dense, because there
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FIG. 2. A contour plot of the time-averaged power-spectrum
⟨|f̂ |2(t, k, s)/C2(t)⟩, for the same simulation as in figure 1
(note that C2 decays because of collisions and finite-grid ef-
fects, the power spectrum has to be normalised to it at every
time).

is only one, necessarily positive, eigenvalue. This, how-
ever, is a singular case. As the system evolves matter
moves around, and x = 0 generically changes from being
over-dense to under-dense (alternatively, it does so for
different realisations of the initial conditions), and there-
fore the sign of Φi

j also changes. Thus, there is a tem-
poral sequence of phase-space rotations and stretching—
essentially, differential phase-space rotation, leading to
the generation of small-scale structure (cf. appendix C 2).

Consequently, phase-space rotation transports small-
scale structure from s to k and back, and that is sup-
plemented by an order-unity smaller (since the positive
eigenvalue is necessarily the largest) cascade of power
to increasingly larger k and s (similar to the plasma
echo joint with a cascade in [31]).5 Hence, equation (14)
describes a phase-space turbulence, where C2 cascades
to smaller scales by larger-scale tidal fields, along the
critical-balance line.

To test this conclusion with the simulations, we cal-
culated time-averaged F̂ , as a function of |k|, |s| (with
the negative values folded on the positive ones), for the
simulation shown in figure 1. This is plotted in figure
2, which shows a contours time-average (as a proxy for

an ensemble-average)
〈
|f̂ |2/C2(t)

〉
Time

∼ F̂ . They are

arranged in a rectangular shape: the critical-balance line

5 This behaviour is generic: chaos—the exponential separation
of nearby trajectories in phase-space—combined with Liouville’s
theorem, necessitates the formation of structure on increasingly
smaller scales.

(§II C) is nothing but the diagonal of this rectangle, and
there is a slight excess along the line, due to the flow
along it. This rectangle is brought about by the afore-
mentioned rotation in the (k, s) space, conjoined with
the effect of the positive eigenvalues of Φi

j , which stretch
structures along the critical-balance line.

E. Source-term behaviour for a cold system

Having described the homogeneous version of equation
(14), let us now include the source term.

1. Phase-space flux

Equation (15) is a conservation equation with a source,
of the form

∂F̂

∂η
+∇k,s · Γ = Ŝ. (21)

Here ∇k,s is a 6-dimensional phase-space gradient, and Γ
is a 6-dimensional flux, whose components are

Γs
i = kiF̂ (22)

Γk
i = −isj

〈
Φij |f̂ |2

〉
. (23)

As described in §IID, there is a flow of C2 to larger val-
ues of k and s. Let us calculate the phase-space flux,
Fs, flowing through a sphere in (k, s)-space of radius s
(or kc(s)), where sc(knl) ≪ s ≪ v−1

th . In steady state,
integrating equation (15) over k yields

∂

∂s
·
∫

Γsddk =

∫
Ŝddk. (24)

Integrating both sides over the ball in s-space with radius
s and using Gauss’ theorem yields

Fs ≡
∫∫

ŝiΓs
id

dkdd−1ŝ =

∫∫
|k|<kc(s),|s′|<s

Ŝddkdds′, (25)

The volume of the ball is ∼ sd, so if
∫
ddk Ŝ ∼ const,

then the integral would scale like sd, if the sign of the
constant is independent of s; this is indeed the case, as
we will show now, by virtue of the gravitational-collapse
instability. If we instead wish to estimate the flux in k,
Fk, the same happens, except that now Fk will scale like
sc(k)

d ∝ kd, by critical balance.

2. Jeans instability of a stream

We are now finally in a position to estimate the (k, s)

dependence of Ŝ. We will do that for the cold case de-
scribed in §IIA above; the coldness of the distribution—
its being a collection of streams—implies that each
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stream, in its own reference frame, is Jeans unstable.
This in turn implies that in the integral on the right-
hand side of equation (25), all scales add up coherently,
as we will show below.

As remarked in §II A above, our analysis focuses on
the limit where svth ≪ 1 ≪ svrms, or, equivalently,
knl ≪ k ≪ kc(v

−1
th ), where kc(s) is defined in equation

(20). On these scales, f is just a collection of streams, so
when zooming in on one of them, and applying the Ray-
chaudhuri equation (5) in its frame of reference, one finds
that the stream will continue to collapse on all scales un-
til k is large enough so that the collapse time τc matches
(kvth)

−1. This is because all the terms in equation (5)
are of dimension [time]−2, with ∇ · g ∼ τ−2

g , and both

last terms on the right-hand-side are O(k2v2th),
6 while the

Hθ term is completely negligible, for k ≫ H/c. Equation
(5) then reduces to

dθ

dη
= −θ

2

3
+∇ · g +O(k2v2th), (26)

which means that for sc(k)vth ≪ 1, the gravity term
∇ · g dominates and there is nothing to stop a collapse,
on a time scale τg, so τc = τg. The Jeans instability
occurs on every stream individually, in its own refer-
ence frame; this is not dissimilar to the instabilities de-
scribed in, e.g., [41, 44]. Indeed, a linear stability analy-
sis of a spatially-homoneneous distribution gives a Jeans-
instability growth rate [36]

τ−2
c = τ−2

g − k2v2th, (27)

which is essentially the same as τ−2
c inferred from the

Raychaudhuri equation (26). Furthermore, in the limit
τgkvth ≪ 1, τc is scale-independent, because τg is—by
critical balance and equation (18). For more on the col-
lapse time, see also appendix D.

This means that the system experiences collapse on
all scales smaller than the outer scale and larger than
1/kc(v

−1
th ), so the source Ŝ at a scale k ≡ 1/r ≪ kc(v

−1
th )

receives contributions from all k′ < 1/r. The contribu-

tion to the source from scale k is
∫
Ŝdds: by the above

discussion, every scale collapses at the same rate, because
nothing in equation (26) depends on k, provided that the
system is cold on these scales, i.e., sc(k)vth ≪ 1;7 besides,
the collapse process, by its very nature, brings large-scale
structure to smaller scales. We thus posit that

∫
Ŝdds is

a constant, so that∫ 1/r

0

ddk

∫
dds Ŝ ∼ ε [sc(1/r)]

d
= εr−dκ−d/2, (28)

where ε is (k, s)-independent. We give a dimensional ar-
gument for equation (28) in appendix C, whose outcome

6 Indeed, if initially the system had ωi = 0, then, in the limit
vth = 0, this will stay this way locally in phase-space [40].

7 This holds for the s-integrated source because (26) is a fluid
equation.

is consistent with the physical reasoning laid out above.
This is only valid, of course, when (kvth)

−1 is much longer
than the collapse time and svth ≪ 1.

F. Spectra from C2 cascade

We have argued that two time scales τp and τg must

balance each other, so the rate of change of F̂ in equation
(15) must also be the same as τp or τg (for the other two
terms in that equation are balanced critically). Now let
us use that to find the small-scale asymptotics of the
power spectrum F̂ . To leading order in the large-(k, s)
limit, one can parameterise it by

F̂ (k, s) ∼

{
F1k

γsξ, if s≪ sc(k) ≪ v−1
th , knl ≪ k

F2s
δkσ, if v−1

rms ≪ s≪ v−1
th , k ≪ kc(s),

(29)

for some γ, δ ≤ 0, ξ, σ ∈ R. For P (k) to be defined, F̂
must be independent of s in the limit s ≪ sc, kc(s) ≪
k ≪ kc(v

−1
th ), whence ξ = 0; σ = 0 for the same reason

(f must have a defined velocity variance). Let us find γ
and δ.
To find γ, consider the amount of C2 on a scale k−1

(or smaller), which is just the variance of f over all scales
up to k = 1/r, viz.

δf2r =
1

(2π)2d

∫ ∞

1/r

ddk

∫
ddsF̂ . (30)

The flux of C2 (§II E 1) is given by equation (28)—it is
εsdc , so the rate of change of δf2r is

δf2r
τc

∼ εsc(k)
d, (31)

by equation (15), where the time-derivative is ∂/∂η ∼
1/τc. Therefore,

δf2r ∼ ετcs
d
c =

εsd+1
c

k
∼ εkdκ−(d+1)/2. (32)

The s integral in (30) is dominated by s ≤ sc if F̂ declines
sufficiently rapidly with s (i.e. if δ ≤ −d, which will be

verified momentarily). Inserting F̂ ∼ F1k
γ into equation

(30) and then equating with (32) yields

εkdκ−(d+1)/2 ∼ F1s
d
c(k)k

γ+d. (33)

For sc(k) ∝ k, this is solved by γ = −d, which implies
that P (k) ∼ εk−d/

√
κ. By critical balance, τc ∼ 1/

√
κ.

One can also find F̂ in the large s limit with k fixed,
i.e., the exponent δ, in a similar manner. This time, the
analogue of equation (31) for the flux of C2 to higher
velocity scales is

δf2v
τc

∼ εsd, (34)
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where δf2v ≡ (2π)−2d
∫∞
1/δv

dds
∫
ddkF̂ is the variance of

f over all velocity scales up to s ≡ 1/δv. Therefore, by
setting τc = τp,

δf2v ∼ ε
s

kc(s)s−d
= ε

sd√
κ
. (35)

If F̂ ∼ F2s
δ in this limit, then a similar calculation to

the one above yields

F2k
d
c (s)s

δ+d ∼ ε
sd√
κ
, (36)

whence δ = −d.
We have thus obtained that for cold dark matter,

F̂ (k, s) ∼ ετc×

{
k−d, if s≪ sc(k) ≪ v−1

th , knl ≪ k

τdc s
−d, if v−1

rms ≪ s≪ v−1
th , k ≪ kc(s).

(37)
These are the leading-order asymptotics: they are true
for large k at s→ 0, and large s at k → 0,8 and this is the
main result of this paper. In general, F̂ can also depend
on the angle between s and k, viz., on k · s. This angular
dependence arises only at the next order, because it must
not exist at s = 0, or at k = 0.9

In appendix D, we show that exactly the same scaling is
obtained for an Einstein-de-Sitter background (where the
scale-factor is a(η) ∝ η2), which has an explicit similarity
symmetry, and hence an explicit way of defining τc.

Let us see whether the theoretical asymptotic scal-
ings (37) are reproduced in our 1D Vlasov-Poisson sim-
ulation. The power spectra of the system illustrated in
figure 1 are shown in figure 3: a k−1 power-law estab-
lishes itself quickly, persisting up to k ∼ 100k0, which is

of the order of kc(v
−1
th ), as expected. These are just |f̂ |2,

averaged over a short time-interval around the time-step
when they were computed, not ensemble-averaged, but
the time average is a proxy for the latter. We use a short
time window for averaging because the system is not sta-

tionary, and we re-scale |f̂ |2 by C2(t) at every time-step
(which decays due to collisions and finite-grid effects).
However, in figure 4, which displays cleaner power-laws
in the appropriate range of k and s, we do average over
the entire simulation. While the system is not stationary,

8 This scaling is marginal, in that the region up to s = sc in
the integral in equation (30) turns out to be as large at the
region s > sc; this, however, does not invalidate the conclusion,
because if both are dominant, then they both contribute ∼ sdc ,
so the rest of the argument still goes through.

9 A repetition of the calculation presented in this sub-section with
λ < 1 (defined below equation (12)) yields that there does not
exist a solution to the analogues of (33) and (34), when conjoined
with Poisson’s equation, kδgr ∼ δρr, whence λ < 1 is not con-
sistent with a self-gravitating system, whose gravitational field
is not dominated by an external potential. See appendix B for
details.

this only affects the amplitude—not the overall scaling—
and figure 3 shows that the re-scaling by C2 corrects for
that; hence, we use figure 4 as an approximation for F̂ .
As the system is sourced by the gravitational-collapse

instability, which was shown in §II E to continue until
(kvth)

−1 matches the collapse time, the scaling of the
power spectrum must be truncated at vth. To test the
theory further, it is necessary to see whether it is indeed
the case that the asymptotics (37) persist until vth is
reached. We ran identical simulations, differing only by
the value of vth, to verify this. The result is presented in
figure 5: the left column has vth = 0.005v0 while the right
column has vth = 0.025v0. The s-spectra in the bottom
row show that indeed, the s−1 power-law is truncated
at a lower value of s, by a factor that matches the ratio
of vth of both runs. The s−2 (or k−2) scaling of F̂ at
svth ≫ 1 (or k ≫ kc(v

−1
th )) is discussed in appendix A.

The k−d asymptotic of the density power-spectrum
may be derived by an altogether different, yet systematic
approach—by performing an asymptotic analysis of the
an integral expression for P (k) and examining its critical
points. We do so in §III below, which is self-contained.

III. SADDLE-POINT APPROACH

In this section, we focus on 3 spatial dimensions. For
pure gravitational Newtonian evolution of N identical
particles, the power-spectrum is exactly given by [e.g.,
33]

P (k, t) ∝
N∏

n=1

∫
d3qnd

3pnP({q} , {p})eik·[x1(t)−x2(t)],

(38)
where (pn,qn) is the initial phase-space position of par-
ticle n and (xn(t),vn(t)) is the phase-space position of
particle n at time t, and P({q} , {p}) is the joint prob-
ability distribution of the initial phase-space positions

({q} , {p}) ≡ {(pn,qn)}Nn=1 of all particles. This equa-
tion is permutation-invariant, and, therefore, the choice
of two particles is arbitrary.
For cold dark matter with Gaussian initial conditions,

the initial distribution P is

P({q} , {p}) = V −NC({q} , {p})√
(2π)3N detCN

pp

e−
{p}T (CN

pp)−1{p}
2 , (39)

where CN
pp = CN

pp({q}) is the 3N × 3N covariance ma-
trix of {p}, and C encapsulates initial density-density
and density-momentum correlations [54], whose func-
tional dependence on particle positions depends on the
cosmology (we take a ΛCDM background). Below we
will require the following properties of CN

pp, derived in
appendix E, based on the assumption vth → 0 (so the
conclusion again will be valid at k ≪ kc(v

−1
th ) as in §II):

(i) Σ ≃ Aq2 at small q for some order-unity matrix A,

(ii) |a|2 Σ ∼ O(1) in this limit, and (iii) at q → ∞, the
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FIG. 3. The time evolution of the power spectra ⟨|f̂ |2⟩10 for the simulation illustrated in figure 1. These were produced by

time-averaging |f̂ |2 over 10 simulation outputs (corresponding to time windows of ±0.68τ0). Left panel : the k-spectrum (at
the fundamental s mode) at different times, multiplied by k. Right panel : the s-spectrum at the fundamental k mode. Both
spectra are compensated by the expected asymptotics (multiplied by k and s respectively). A k−1 power-law establishes itself
quickly, persisting until k ∼ 200k0, which is of the order of kc(v

−1
th ), as expected; similarly, the s−1 power-law persists until

sv0 ∼ 200. See appendix A for plots of ⟨|f̂ |2⟩10 at some individual times.

FIG. 4. The time-averaged spectra for the same set-up as in figure 1, as proxies for the ensemble-averages (see text). Unlike
figure 3, these power spectra are uncompensated.

correlation matrix CN
pp tends to a constant, i.e. Σ is order

unity in the limit q → ∞.

A. Strategy to obtain the small-scale asymptotics

The usual procedure to obtain the power spectrum
P (k) from eq. (38) would involve integrating out parti-
cles 3, . . . , N , leaving only a 12-dimensional integral, over
the phase-sub-space of particles 1 and 2. We will, how-

ever, go the other way round, and integrate first over the
relative position and momentum of this pair, and only
then over all other particles—we will see that this inte-
gration order is well-suited to deriving the asymptotics
of P (k, t) as k → ∞. To do so, we change variables
from q1 and q2 to q ≡ q1 − q2 and Q ≡ (q1 + q2)/2,
and to their conjugate momenta, p and P, respectively.

As {p}T (CN
pp)

−1 {p} is quadratic in {p}, we can make the
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show the s spectra at the end of the simulations, compensated by s. In the warmer case, the spectrum ceases to scale as s−1

at around sv0 ∼ 10, while in the colder one it does so at sv0 ∼ 50 (marked by grey lines). See text and appendix A for details.
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p dependence explicit, viz.,

{p}T (CN
pp)

−1 {p} ≡ pTΣ−1 (q)p

− 2a
(
q,Q,P, {(q, p)}N3

)
· p− 2B

(
q,Q,P, {(q, p)}N3

)
,

(40)
where a is a linear function of momenta and B a
quadratic one.

Using Duhamel’s principle for Hamilton’s equations of
motion, one has [e.g., 33]

ik·[x1(t)− x2(t)] = iq·k+igqp (t, tinitial)p·k+ikψI , (41)

where gqp is a ‘propagator’ that encapsulates linear evo-
lution (defined below), and the ‘interaction term’ is

kψI

(
P,Q, {(q, p)}N3

)
≡ k ·

∫ t

0

dt′gqp(t
′, tinitial) (F1(t

′)− F2(t
′)) , (42)

Fn being the additional acceleration of particle n, relative
to its motion in the part already included in gqp, caused
by all other particles. For example, if gqp = t − tinitial,
one re-obtains regular Newtonian dynamics. Using in-
put from first-order cosmological perturbation theory (or,
alternatively, re-summed kinetic field theory [55]), we

take gqp(t) ≡ [D+(t)−D+(tinitial)] /Ḋ+, where D+ is
the ΛCDM growth factor, and then ignoring the ψI term
in (41) just yields the Zel’dovich approximation, whose
asymptotics were studied by [56].

B. Possible saddle points

Using the above changed variables, we define the ex-
ponent

φ ≡ −1

2
pTΣ−1p+a·p+iq·k+igqpp·k+ikψI+B, (43)

which, using equations (40) and (41), turns the integral
for P (k, t) into

P (k, t) ∝
N∏

n=3

∫
d3qnd

3pnd
3Qd3Pd3qd3p

V N
√

(2π)3N detCN
pp

C({q} , {p})eφ.

(44)
We start by integrating over p, q in equation (38), and
apply the saddle-point approximation. This is a movable-
saddle problem, so it requires care in handling [57].10 The
function ψI is a smooth function of q and p, because it
arises from the Hamiltonian flow in phase-space, gener-
ated by a smooth gravitational potential (recall that we

10 Also bear in mind that the saddle point may be complex, but that
is innocuous, since the exponent can be continued analytically
to the complex plane.

neglect collisions and that time is bounded). This asser-
tion is just the statement that λ = 1 as before. Letting
ψq ≡ ∂ψI/∂q and ψp ≡ ∂ψI/∂p, the exponent (43) is
stationary when

− Σ−1p+ a+ igqpk+ ikψp = 0

− 1

2
pi
∂(Σ−1)ij

∂q
pj + pi

∂ai

∂q
+
∂B

∂q
+ ik+ ikψq = 0.

(45)
Let us parameterise the solution as

p = kαc, q = kβd, (46)

where c,d ∈ C3 are order unity as k → ∞. Together
with α, β, they are to be determined by equations (45),
by seeking a dominant balance, i.e., such a balance that
the exponent (43) has the weakest k-dependence around
the stationary point that solves equations (45).
A priori, equations (45) could permit a balance that

is independent of the initial condition distribution, i.e.,
that same balance would exist for uniform initial con-
ditions. But in that case, Liouville’s theorem—changing

variables from the initial phase-space positions {(q,p)}N

to the current ones {(x,v)}N—ensures that this yields a
contribution to P (k) proportional to δD(k), whence this
balance is not dominant. Conversely, the dominant bal-
ance must involve the first terms on the left-hand sides of
equations (45). If β > 0, then, as Σ −→

q→∞
const, the first

term in the first of equations (45) is proportional to p. As
this must play a part in a dominant balance, this implies
that α = 1. Substituting such a saddle point into equa-
tion (43) gives an exponentially suppressed contribution,
∼ O

[
exp(∝ −k2)

]
to P (k) at most.

Thus stationary points with β < 0 are dominant, as
they could contribute a power-law tail to P (k). For β <
0, equations (45) imply 1 = α − 2β and 1 = 2α − 3β,
whence α = β = −1. This is consistent, since generically

lim
(q,p)∼k−1

k→∞

(∣∣ψq

∣∣ , ∣∣ψp

∣∣) = O(1), (47)

and so the interaction term is potentially as important
as the linear term; that both are equally important is
essentially a statement of critical balance (cf. §II C).

C. Evaluation of the asymptotics

Having proven that the asymptotic expansion of the
power-spectrum is given, up to exponentially small (in k)
contributions, by its dominant saddle point at q, p ∼ k−1,
one is allowed to replace φ with its expansion at small
q, p. This yields

φ ≃ −1

2
pTΣ−1p+ a · p+ iq · k+ igqpp · k

+ ik
[
p ·ψp(0) + q ·ψq(0)

]
+B(q = 0) + o(1). (48)
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With this asymptotic approximation for φ, we need to
integrate equation (44) over p and q to obtain its asymp-
totic scaling with k. Observe, that detCN

pp factorises into
a detΣ multiplied by normalisation factors for the other

momenta variables. The only other pieces that still de-
pend on Q, P, and the initial positions and momenta of
the other particles are C, a, B, and ψq,p. Thus,

P (k, t) ≃

〈∫
d3qd3p C

[(2π)3 detΣ]
1/2

exp

[
−1

2
pTΣ−1p+ a · p+ iq · k+ igqpp · k

]
eik(q·ψq(0)+p·ψp(0))

〉
, (49)

where average is over the position and momentum of the centre of mass of particles 1 and 2, as well as the positions
and momenta of all the other particles (B is absorbed into the averaging). Integrating over p, we get

P (k, t) ≃

〈∫
d3q C exp

{
−k

2

2

[
gqpk̂+ψp(0)−

ia

k

]T
Σ(q)

[
gqpk̂+ψp(0)−

ia

k

]
+ iq · k+ ikq ·ψq(0)

}〉
. (50)

This integration does not introduce any power of k because both d3p and detΣ1/2 are proportional to k−3 at the
vicinity of the stationary point, so the two cancel. Recalling that the saddle point is at q = c/k, where c an is
order-unity constant, we change variables to y = kq, whence

P (k, t) ≃ 1

k3

〈∫
d3y C e−

k2

2 [gqpk̂+ψp(0)− i
ka(y/k)]

T
Σ(y/k)[gqpk̂+ψp(0)− i

ka(y/k)]+iy·[k̂+ψq(0)]
〉
. (51)

Here, the integral d3q, as opposed to the momentum integral above, is not compensated by any function that scales
like k−3, so it is this integration that yields the k−3 scaling, which emerges from the q ∼ k−1 at the stationary point.
As Σ(q) ≃ Aq2 + h.o.t. at small q, we find that the coefficient multiplying k−3 is of order unity (C is evaluated at

p = d/k, q = c/k). Writing Σnm ≃ Snm
ij qiqj and λi = gqpk̂

i + ψi
p(0), we have that the exponent in (51) is[

gqpk̂+ψp(0)−
i

k
a(y/k)

]T
Σ(y/k)

[
gqpk̂+ψp(0)−

i

k
a(y/k)

]
+ iy ·

[
k̂+ψq(0)

]
= Snm

ij λnλmy
iyj − 2i

[
gqpk̂+ψp(0)

]T
Say − |ã|2 + iy ·

[
k̂+ψq(0)

]
, (52)

where ã ≡ lim
q→0

√
Σa and Saq ≡ lim

q→0
Σa, whence the leading-order term becomes

P (k) ≃ (2π)3/2

k3

〈
C
√
detS e|ã|

2

e−[k̂+ψq(0)+ST
a (gqpk̂+ψp(0))]

T
S−1[k̂+ψq(0)+ST

a (gqpk̂+ψp(0))]/2
〉
. (53)

with Sij ≡ Snm
ij λnλm. The inner product Sijy

iyj is nothing but the matrix Σ, contracted with λi − iai/k and its
conjugate.

We have therefore established that for collisionless, cold,
dark matter in the non-relativistic limit, the asymptotic
behaviour of the power spectrum as k → ∞ is dominated
by the contribution of the saddle point at q, p ∼ k−1.
This yields P (k) ∼ k−3, with an order-unity coefficient;
that this coefficient is non-zero follows from §II.

IV. DISCUSSION

A. The importance of being cold

The k−d power spectrum arose from a turbulent cas-
cade in phase-space, where the gravitational field was
treated as a smooth field with the Batchelor approxima-

tion; this is a cold, gravitational, phase-space analogue
of Batchelor turbulence in hydrodynamics [48], where a
tracer is advected by a large-scale, smooth velocity field.
A crucial step in the derivation of the source term in §II E
was that the source was a constant multiplied by F̂ , at
sc(k), s ≪ v−1

th , i.e., that it accumulated when integrat-

ing to give εsd. This was also reflected in §III, where
the initial conditions were special for cold dark matter,
with the particular functional form of the CN

pp matrix,

Σ ∼ Aq2, reflecting that if two particles start out at ex-
actly the same spatial position, they will remain together
for ever.

When the system is not cold, these assumptions fail.
Indeed, the source term would not accumulate when inte-
grated over k and s up to small, non-linear scales, because
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at sv−1
th ≫ 1, sc(k)vth ≫ 1, there is no instability to drive

the collapse, so one would expect
∫∫

Ŝdkds = const.

The coldness has two implications: first, it means that
locally in phase-space, the distribution function is always
a stream, and therefore, locally, the Raychaudhuri equa-
tion (5) applies. This, in turn, means that the stream is
unstable to gravitational collapse, with a collapse time-
scale, set by τg ∼ 1/

√
Gδρ, i.e., precisely the time-scale

to give equation (31). Secondly, τc is scale-independent,
so the contributions to the integrated source (25) add up
coherently. Together, these two features imply that the
source has the shape in equation (28); this then enables

the estimate of F̂ in §II F.

While in a collisionless setting vth would not change
with time,11 in reality finite-N effects do increase vth.
Additionally, baryons would influence the matter power
spectrum significantly on small scales, probably leading
to a deviation from the power-law scalings found here.
The approach used in this paper does not apply once
interactions with baryons are included, and this is its
main limitation. Another limitation is that it only applies
in-so-far as dark matter behaves as a cold, classical phase-
space fluid—other dark-matter candidates might follow
different scalings, and we defer this to future work.

Were it not for baryons, a full theory of the constituent
particle of dark matter should predict both the initial
value of vth and the functional form of the collision op-
erator; this should allow one to find how C2 changes
with time, and thence how vth evolves. Measuring the
break in the dark-matter power-spectrum—the transi-
tion from k−3 to a different power-law (in d = 1 to a
k−2 scaling as in figure 4)—would hypothetically allow
one to find the present-day value of vth, which is di-
rectly connected to the nature of dark matter (if indeed
it held that uν ≪ vth, where the collisional velocity-scale
uν is defined in appendix A). For example, for WIMPs,
which decouple from the photons when non-relativistic,
one would have

vth(z) = c
T (z)

Tkd

√
2kBTkd
mc2

(54)

≈ 3.3× 10−12c(1 + z)

[
10 MeV

Tkd

]1/2 [
GeV

m

]1/2
,

where T (z) is the photon temperature at redshift z and
Tkd is the kinetic-decoupling temperature [20, 21, 58].
This is by far too small to be observed practically, and

11 Because C2 ∼ ∥f∥2∞ vdth, and both C2 and ∥f∥∞ are conserved

(in fact, one can define vth ≡
[
C2 ∥f∥−2

∞

]1/d
/
√
π as a measure

of the thinness of the distribution). There is of course a change
in ∥f∥∞ = max f because of the Universe’s expansion, but this
is very slow for the large-k limit, where k ≫ H/c.

moreover, it corresponds to (cf. appendix D)

kc(v
−1
th ) ∼ δ

1/2
typ

H−1

vth
(55)

≈ 108h(z)

1 + z
δ
1/2
typ Mpc−1

[ m

GeV

]1/2 [ Tkd
10 MeV

]1/2
,

where the Hubble constant is H(z) =
100h(z) km s−1 Mpc−1 (this value is of the same
order as the free-streaming scale [20] for a typical
over-density δtyp of order unity).

B. Some like it hot: similarities with plasma
physics

Phase-space Batchelor cascade was recently proposed
to be the universal régime of (plasma) Vlasov-Poisson
turbulence at Debye and sub-Debye scales [31, 32], and
has been numerically verified in 1D simulations of turbu-
lence driven by external forcing [32] and the two-stream
instability [59]. Like in the cold-dark-matter turbulence
presented here, the (electric) field fluctuations are spa-
tially smooth, so the phase-space mixing of the distri-
bution function is dominated by the outer scale fields.
However, unlike cold-dark-matter turbulence, which is
sourced at every Jeans-unstable scale, the cascade in the
plasma case is one of constant C2 flux, because C2 is only
sourced at the outer scale; this changes the scalings of the
power spectrum and of the field spectrum. This situation
is analogous to the gravitational phase-space turbulence
at s ≫ v−1

th in the simulations presented in figure 5. We
will investigate this régime further in future work.

C. Implications for dark-matter haloes

The P (k) ∼ k−3 scaling (in 3D) derived here for the
non-linear power-spectrum sheds some light on universal
properties of dark matter haloes; within the hierarchi-
cal clustering paradigm [60], the small-scale limit of the
power-spectrum is dominated by the 1-halo term,

P1h(k) =

∫
dM

dn

dM
[R3δũ(kR)]2, (56)

where dn/dM is the halo mass function, R(M) ≡
R200(M)/c(M), δ is the amplitude of the halo den-
sity profile, c(M) is its concentration, R200 is the ra-
dius where the density is 200 times the critical den-
sity of the Universe, and ũ is the Fourier transform of
the normalised density profile u(x/Rs) [61]. If we de-
fine ∇c ≡ −d ln c/d lnM and ∇n ≡ M d

dM

[
ln dn

dM

]
, both

at M → 0, then, as k → ∞

P1h(k) ∼ kγ , γ =
−3(3 +∇n)

(1 + 3∇c)
, (57)



15

provided the halo density-profile ũ(w) decreases suffi-
ciently fast with w. Setting γ = −3 yields a relation
between the universal concentration-to-mass relation and
the halo mass function, viz.

∇n = 3∇c − 2. (58)

V. SUMMARY

In this paper we have described a physical mecha-
nism that produces the k−d asymptotic scaling of the
dark-matter power spectrum naturally. This was done in
two ways: by expressing P (k) as a phase-space integral
and analysing it with a stationary-phase method (§III),
and via a phenomenological study of a critically-balanced
phase-space cascade, akin to Batchelor turbulence, for
a cold, collisionless, self-gravitating system (§II). Both
methods are phase-space based, and so remain valid even
after streams cross. The fact that the phase-space dis-
tribution function is cold (i.e. only non-zero in a d-
dimensional sub-manifold of phase-space) was crucial to
both approaches. Gravitational collapse sources a cas-
cade of the quadratic Casimir invariant. The cascade is
sustained by the joint action of phase mixing and tidal
forces (which are a smooth Batchelor-like field), that
transfer phase-space structure into ever smaller scales.
The balance between linear free streaming and tidal
forces also appears in the saddle-point argument of §III.
Usually in turbulent systems there is an inertial range
[62], where there is a constant-flux cascade of an invari-

ant. Gravitational turbulence is unique in that the flux
is not constant over the range of scales of interest, and
yet there is a universal scaling régime of the phase-space
power spectrum.
We have also conducted 1D Vlasov-Poisson simula-

tions, which confirmed the theory.
The derivation of the small-scale asymptotics of the

dark-matter power-spectrum may allow for a non-trivial
test of effective field theories of the large scales, both
by imposing these asymptotics on them, or by using F̂
found here as a closure for these theories. We intend to
investigate this in future work.
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Appendix A: Simulation methods

Here we describe the details on the Vlasov-Poisson simulations performed in this paper, whose results were shown
in §II and figures 1-5. The simulations were conducted using the Gkeyll code12, which is an Eulerian solver in phase-
space, originally designed for the Vlasov-Maxwell system. Gkeyll uses a discontinuous Galerkin algorithm to estimate
distribution functions, which conserves energy exactly [37]. We set the vacuum permittivity ε0 = −1, which turns
electrostatic interactions into gravitational ones—and, for unit particle charges it is equivalent to choosing units such
that G = 1/(4π). The simulations we performed were 1D in position space (so the phase-space is 2D), with periodic
spatial boundary conditions; the units of length were such that the box-size was L = 2π. We always assume that
the particle mass is unity, which implies that the system’s total mass is normalised to M = 2π. These three choices
specify the units for the simulations, and are equivalent to choosing τ0 = k0 = v0 = 1 (these are defined in §II A).
Thus, the outer scale knl ∼ k0 is of order unity.

1. Initial conditions

We simulated a single-species distribution function, with an initial condition (4), where we chose vth = 0.005v0 or
0.01v0, and

ρin(x)
L

M
= 1−

5∑
n=1

an
kn

sin (knx+ ϕn) (A1)

uin(x) = v0

5∑
n=1

bn cos (knx+ ϕn) , (A2)

where ϕn ∈ [0, 2π] are random phases, an

k0
∼ U [0, 0.2] and kn = k0Un, with Un ∈ {1, 2, . . . , 10}—a uniformly-

distributed random integer. For runs with one initial stream (figures 5 and 7), bn = an/k0, while for runs with three
initial streams (figure 1), we set bn = 0.05an/k0 and tripled the above initial conditions by shifting uin(x) by ±2v0

12 https://gkeyll.readthedocs.io/
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and duplicating for two additional streams. We ensured that the resolution was sufficiently fine that a Maxwellian of
width vth would still be resolved: we used an Nx ×Nv phase-space grid with Nx = Nv = 4032 for the single-stream
initial condition, and Nx = Nv = 7680 for the multi-stream one.

2. Collisions

One would like to run collisionless simulations, but the finite resolution of the code induces an unavoidable effective
collisionality due to the grid. Real dark matter also has a finite number of particle—and finite-N effects also induce

a effective collisionality. We have also added a weak collision operator
(

∂f
∂t

)
c
∝ ν, where ν is the collision frequency

to improve convergence. The collision operator used was the Dougherty (LBO) collision operator—a type of Fokker-
Planck operator in velocity-space, viz. (

∂f

∂t

)
c

= ν
∂

∂v

[
(v − u) f + v2t

∂f

∂v

]
, (A3)

where u(x) is first velocity moment of f . Details (and the definition of vt) can be found in [63] which describes its
implementation in Gkeyll. The inevitability of some collisions—whether due to the grid, finite-N effects, or a collision
operator—implies the existence of another scale in the problem. We used a Dorland number of Do−1 ≡ ντ0 = 10−6

for all runs, save for figure 7, where Do = 105. The collision time scale is [31, 63]

τν ≡ 1

νs2v2rms

, (A4)

where v2rms is the second veloctiy cumulant. A relevant velocity scale is therefore

uν =
√
ντcvrms, (A5)

where τc is described in §II, which by critical balance (see §II C) also gives a collision length

lν =
√
ντcL ∼

√
ντck

−1
nl . (A6)

For a sufficiently small ν, one can have13

knl ≪ k ≪ kc(v
−1
th ) ≪ l−1

ν (A7)

v−1
rms ≪ s≪ v−1

th ≪ u−1
ν , (A8)

where kc(s) is defined by equation (20). While this hierarchy justifies neglecting collisions in this paper, as phase-
space structure cascades to ever smaller scales by (15), the collisional scales, where structure dissipates, are eventually

reached [31, 32]. Likewise, in reality a shot-noise floor F̂ ≈ V/N is eventually reached, too.

3. Results

In the set-up described above, our expectation for the phase-space power-spectrum F̂ (k, s) in equation (37) becomes

F̂ (k, s) ∼

{
F1k

−1, if max {knl, kc(s)} ≪ k ≪ min
{
kc(v

−1
th ), l−1

ν

}
F2s

−1, if max
{
v−1
rms, sc(k)

}
≪ s≪ min

{
v−1
th , u

−1
ν

}
.

(A9)

We are not concerned in the paper with asymptotics of the power spectrum F̂ (defined in (10)) at values of s
and k above v−1

th (respectively kc(v
−1
th ))—but still less than the collision scale. But if one extrapolates the findings

of [32]—who explored turbulence in the régime where vth is of order unity in electrostatic plasmas—from electrostatics

13 In reality, it might be that uν ≳ vth, for both parameters depend
sensitively on the nature of the dark-matter constituent parti-

cle(s). But as 1/s is larger than both, none of the conclusions of
the this paper are invalidated by this.
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to gravity (ignoring any possible differences), while noting that above v−1
th gravitational collapse halts by equation

(26)—then one should have, for vth ≫ uν ,

F̂ (k, s) ∼


F1k

−1, if max {knl, kc(s)} ≪ k ≪ kc(v
−1
th )

F2s
−1, if max

{
v−1
rms, sc(k)

}
≪ s≪ v−1

th

F3k
−2, if max

{
knl, kc(s), kc(v

−1
th )
}
≪ k ≪ l−1

ν

F4s
−2, if max

{
v−1
rms, sc(k), v

−1
th

}
≪ s≪ u−1

ν ;

(A10)

the spectrum is truncated exponentially at k > l−1
ν or s > u−1

ν .
Figure 1 shows an example time-evolution of the system, with vth = 0.005v0, and Do = 106. This corresponds

to uν ∼ 10−3v0, whence the hierarchy of scales is satisfied. The grid s is Nx = Nv = 7680, and the velocity box-s
is 12v0, so the Nyquist velocity-scale is sNyv0 ≈ 2011. This figure shows that the stream collapses quickly, by rotating
and twisting in phase-space. In figure 3 we show the evolution of the power-spectra, and some snapshots (beginning,
middle and end) are given in 6. Figure 7 is similar to figure 1 but shows the time-evolution of one initial stream,
with Do = 105. It has the same qualitative features.

Because of numerical noise, f can become slightly negative in very confined areas. This is because the discontinuous
Galerkin algorithm that Gkeyll uses is not positivity-preserving, and errors arise from over-shooting due to large
derivatives. That is why we have added a small collision operator, which smooths large velocity derivatives, and
alleviates this effect. In any case, these regions do not cause the simulation to become unstable, because they are
isolated and |f | is still very small there; the total mass occupied by negative f is

∫∫
fΘ(−f)dxdv < 10−5M for the

simulation in figure 1 and < 0.02M for figure 7. Therefore, this does not invalidate any of our conclusions in this
paper, and we have set f 7→ fΘ(f) for the purpose of plotting figures 1,5 and 7.

Appendix B: Non-smooth gravitational-field fluctuations

Let us prove that a Hölder exponent λ < 1 is inconsistent with critical balance in conjuction with Poisson’s
equation. By that equation and the Paley-Wiener theorem (which works for λ < 1), P (k) ∼ k2−dδg2r . δgr ∼ k−λ,
so P (k) ∼ k2−d−2λ. If P (k) ∼ F1k

γ , then γ = 2 − 2λ − d. By critical balance, this means that sc(k) ∝ k(1+λ)/2, so
the collapse time is τc ∼ k(λ−1)/2. As the (integrated) source is εsdc , the C2 budget equation (31) then implies that
γ = −d, whence λ = 1, which is a contradiction. A proof that the Vlasov-Poisson system and critical balance are
incompatible with λ < 1 for a constant source is given in §III.F of [32].

Appendix C: Estimates for the source

In this appendix we will discuss
∫∫

Ŝ in more detail, and give an argument that it scales like εsc(k)
d, to complement

§II E.

1. Integrated source

Consider the integral (25). As remarked in §II E 2, by dimensional analysis, the magnitude of the contribution of
each is proportional to the collapse time, which is nothing but the critical-balance time (i.e. independent of k and s).
The sign of the proportionality coefficient can, prima facie, depend on scale, but in §C2 below we argue that it
doesn’t. Let us present a dimensional argument that each scale gives a scale-independent contribution: by analogy
with equation (25), the integrated source is

Fk = (2π)−2d

∫ 1/r

ddk

∫
dds Ŝ ∼

∫ ∞

r

ddx

∫
ddv

〈
[g(1)− g(2)] · ∂

∂v

(
f(2)f(1)

)〉
+ (1 ↔ 2). (C1)

Crucially, the product [g(1)− g(2)] · ∂/∂v is the (inverse) collapse time, proportional to 1/τc. Furthermore, its sign
must also be independent of scale: as long as max {s, sc(k)} vth ≪ 1, nothing in equation (26) depends on scale
(see §C2 below for further justification that its sign is independent of scale) so the proportionality constant is truly
constant.

To estimate the source, we use the following estimates: |g(1)− g(2)|2 ∼ G2F̂ (k, 0)kd−2sdc(k), f(2)
2 ∼ F̂ (k, s)kdsd,

f(1)2 ∼ F̂ (0, s)sdkc(s)
d, where k ∼ 1/x, s ∼ 1/v. Hence, for sc(r

−1) ≪ 1/r, by Poisson’s equation and equation (16)
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(cf. equation (30) below too) 〈
g̃ · ∂

∂v

(
f(2)f(1)

)〉
∼ Gs3d/2+1F̂ (k, 0)k3d/2−1

√
F̂ (0, 0). (C2)

Integrating over v up to the critical-balance line gives a factor of s−d, leaving14

Gsd/2+1
c F̂ (k, 0)k3d/2−1

√
F̂ (0, 0); (C3)

after integration over x on scales larger than r, if one parameterises F̂ (k, 0) ∼ F1k
γ , one obtains

Fk ∼ F1τ
d+1
c G

√
F̂ (0, 0)r−γ−2d. (C4)

If γ = −d then this is ∝ r−d. A similar calculation yields the analogous result Fs ∼ εsd.
Fortunately, we know that the density power spectrum of cold dark matter assumes its k−d shape very quickly

initially [15, 56, 64], when matter is still in a régime where the Zel’dovich approximation is accurate, whence one can

safely take initially γ = −d. We will show in §II F below that if indeed
∫∫

Ŝ ∼ εsd, then this gives a k−d (or s−d)

power spectrum. This power spectrum in turn keeps producing a source with just the right scaling, to ensure that F̂
retains the same k−d power-law. This is an a posteriori justification for

∫∫
Ŝ ∼ εsd.

2. Sign

To show that the sign is indeed independent of scale, it will be easier to work in real space. So far, the entire
analysis was done in d spatial dimensions for generality, but it is easiest to estimate the source term in d = 1; this
generalises to d dimensions.
First, we will show that locally, gravitational collapse occurs about every local maximum of f that is also in an

over-dense phase-space region. Let w0 = (x0, v0) be a local maximum of f . In the limit vth → 0, there exists a phase-
space neighbourhood of w0, where f = ρ(x)h(v−u(x))+O(vth), where ρ(x) = ρ0− ρ2(x−x0)

2, u(x) = v0+ v1x, and
h is a sharply-peaked function (around 0), as is visible from figure 1 or 7, and was explained in §II A. Besides, the
gravitational field can be decomposed into a sum of terms: one, gin, arising from the stream that passes through w0,
and the external field, gext: g ≡ gin + gext. Without loss of generality we can assume that x0 = 0, v0 = 0, g(x0) = 0,
v1 > 0, ρ2 > 0, whence by Poisson’s equation

gin(x) = −4πGx
(
ρ0 − ρ2x

2/3
)
. (C5)

As we are considering a small neighbourhood of w0, the external field is just given by the tidal approximation around
w0, i.e. gext = −g1x, where g1 > 0 because we have assumed that x0 is an over-dense region.

The time-evolution of this system is just that of an anharmonic oscillator (cf. [65]), i.e. it is a rotation in phase-
space whose frequency is ω2 = 4πGρ0 + g1, plus a correction that depends on energy due to the anharmonicity,
∝ Gρ2(ω

2x2 + v2), which is small near w0 = (0, 0).15 This is by definition the process of gravitational collapse,
which is what we had to show.16 ρ0 and ρ2 in general change with time, but that does not modify the conclusions
qualitatively. Additionally, f increases along the stream towards w0.
Now let us proceed to describe the source term, i.e. the integrand of equation (25), whose sign we wish to estimate.

By equation (16) it is 〈
(g(1)− g(2))

∂
(
f(1)δf(2)

)
∂ [v(1)− v(2)]

〉
+ (1 ↔ 2), (C6)

where the shorthand notation is (n) = (xn, vn). We are interested in a particular scale, where the distance between x1
and x2 is x ∼ k−1 and the distance between v1 and v2 is v ∼ s−1. Thus, we consider two points on a collapsing eddy—a

14 Crucially, the svth ≪ 1 limit is needed here, otherwise the in-
tegral would not have accumulated contributions up to s, but
rather only up to v−1

th . At larger s the behaviour changes en-
tirely [cf. 32].

15 The differential phase-space rotation generates small-scale struc-
ture and a cascade to smaller scales; cf. §IID.

16 In generalising this to d > 1, an over-dense region does not guar-
antee that the tidal forces will always be directed towards w0.
However, there will be at least one direction where they will be.
Thus, collapse will occur at least along one direction, whereupon
eventually ρ0 will become sufficiently large.
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single stream which is collapsing around some local maximum of f—whose phase-space s is xv ∼ (ks)−1. See for
example the t = 12τ0 panel of figure 1 or the t = 8τ0 panel of figure 7, which display larger-scale collapsing structures
which in turn contain similar smaller ones. By ergodicity, the ensemble average includes shifting the centre-of-mass
of the eddy and averaging over its position. Therefore, without loss of generality, we assume that the eddy is centred
at the origin of phase-space. As mentioned above, on small scales the eddy comprises a collapsing stream, whence
g(x) points inwards, i.e. sgn(g(x)) = −sgn(x). Additionally, the derivative ∂

(
f(1)f(2)

)
/∂v has two contributions:

one, f(1)∂f(2)∂v is correlated with the direction of g: we choose local phase-space co-ordinates w∥ and w⊥, where w∥
is parallel to the stream, and w⊥ is perpendicular to it. The phase-space gradient of f is mostly along w⊥, of course,
but from symmetry reasons, its velocity component changes sign for in-coming and out-flowing particles, and thus
changes sign with respect to g, so its contribution to the any ensemble-average vanishes.
The other contribution, from w∥, does not: imagine that point (1) is at x1 > 0, v1 > 0, while point (2) has x2 <

0, v2 < 0. Then g(1)− g(2) < 0, and the w∥ component of ∂f(2)
∂v2

is negative, so ∂f(2)
∂v > 0. This point, therefore, gives

a negative contribution to (C6). Now imagine that x1 > 0, v1 < 0, and x2 < 0, but v2 < 0. Then g(1) − g(2) < 0

still. The w∥ component of ∂f(2)
∂v2

is again negative, because the stream gradient increases in a clockwise fashion,

whence ∂f(2)
∂v > 0. Thus, all options for the positions of points (1) and (2) give the same sign, if they are in the same

eddy. By the symmetry between the two particles, all other configurations have the same sign.

On the other hand, the second term, f(2)∂f(1)∂v changes sign rapidly, because f describes a stream, so f is a collection
of sharp peaks in velocity-space, with a rapidly-oscillating derivative, which comes from the phase-space gradient of
f along w⊥. There is also a contribution from the direction along w∥, which leads to an overall increase in f towards
the eddy’s centre-of-mass velocity. Now, this w∥-component also fluctuates with respect to the sign of g, for it is
positive for in-falling particles, while it is negative for particles which are faster than the eddy’s centre-of-mass.

Hence, the only non-fluctuating contribution to the source term, from an eddy of s (ks)−1, has a fixed sign. The
sign, moreover, is independent of the scale, and the fluctuating parts will drop out when averaging and integrating
over the various scales to get equation (25). Consequently, the source term does have a definite sign, and the integrand
in equation (25) adds up coherently.

Appendix D: Einstein-de-Sitter universe

Although equation (37) is valid for ΛCDM, and in general any cosmology where there exists a separation of scales
between H−1 and the non-linear scale knl, in the special case of an Einstein-de-Sitter (EdS) cosmology, there exists a
scale-invariance [e.g., 66] which provides additional insight. We focus in this appendix on d = 3 for simplicity. This
scale-invariance involves a (conformal) time scale,

τsc ≡
2

H0

(
π

2Ω
1/2
m H0t0

)1/3(
3

5δrms(k)

)1/2

(D1)

(which is just the collapse conformal time in the standard spherical-collapse model), with H0 and t0 referring to
the present-day Hubble constant and cosmic time, and δrms(k) is the root-mean-square amplitude of the initial dark-
matter density fluctuation at scale k, normalised by the linear growth rate at the initial time. If the initial over-density
power-spectrum is Pin(k) = P0(k/kp)

n for some pivot scale kp, then

τsc =
2
√
3√

5H0

(
π

4Ω
1/2
m H0t0

)1/3(
knp

P0k3+n

)1/4

. (D2)

Requiring a dominant balance between the collapse time-scale τsc and the linear τp implies

sc(k) ∝ k(1−n)/4. (D3)

Consequently, the analogue of equation (33) here would imply

k4+γ ∼ sc(k) (D4)

or γ = −(15 + n)/4. In a steady state, the power spectrum must be invariant under the collapse process, and so in a
self-sustaining scenario, γ = n, which is solved by n = −3.17

Note, that the collapse time in equation (D1) is precisely the collapse-time τc in §II E for n = −3.

17 One may wish to relax the steady-state assumption, and set n =
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FIG. 6. Same as figure 3, but highlighting three times for clarity. See text for details.

ns − 4; this yields γ = −(11 + ns)/4, almost indistinguishable
from −3. However, as the calculation in this paper is in the fully
non-linear régime, it is appropriate to set n = −3 here, for it is

already established that this asymptotic scaling develops already
in the Zel’dovich approximation [56, 64].
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FIG. 7. Colour plots of the distribution function showing the time evolution of a cold stream with vth = 0.01v0, and Do = 105.
See text for details.
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Appendix E: Initial momentum-correlations

The purpose of this appendix is to prove that Σ ∼ Aq2 as q → 0, and that Σa ∼ O(q), for §III. What follows holds
for vth = 0. Let us write

{p}T (CN
pp)

−1 {p} ≡ pTΣ−1 (q)p− 2a
(
q,Q,P, {q}N3 , {p}N3

)
· p− 2B

(
q,Q,P, {q}N3 , {p}N3

)
, (E1)

as in equation (40). Since 2p1 = p+2P and 2p2 = 2P−p, the part involving a comes solely from the cross-correlations
between p1,2 and p3, . . . ,pN , viz.

pT
1 (C

N
pp)

−1
1npn + pT

2 (C
N
pp)

−1
2npn = P

[
(CN

pp)
−1
1n + (CN

pp)
−1
2n

]
pn +

1

2
p
[
(CN

pp)
−1
1n − (CN

pp)
−1
2n

]
pn

+P
[
(CN

pp)
−1
11 − (CN

pp)
−1
22

]
p+ 2P

[
(CN

pp)
−1
11 + (CN

pp)
−1
21 + (CN

pp)
−1
12 + (CN

pp)
−1
22

]
P,

(E2)

where (CN
pp)

−1
mn specifies the part of (CN

pp)
−1 that pertains to particles m and n, and an Einstein summation convention

is implied; this is because (CN
pp)

−1
21 = (CN

pp)
−1
12 .

Now, (CN
pp)

−1
mn is a function of the positions of the particles only. When q is small, q1 and q2 both tend to Q, and

by the indistinguishability of the constituent particles,

(CN
pp)

−1
1n (q1 = Q,q2 = Q,q3, . . . ,qN ) = (CN

pp)
−1
2n (q1 = Q,q2 = Q,q3, . . . ,qN ) (E3)

(CN
pp)

−1
11 (q1 = Q,q2 = Q,q3, . . . ,qN ) = (CN

pp)
−1
22 (q1 = Q,q2 = Q,q3, . . . ,qN ) (E4)

Consequently, for small q and finite Q, . . . ,qN ,P, . . . ,pN , we have[
(CN

pp)
−1
1n − (CN

pp)
−1
2n

]
∼ O(q) (E5)[

(CN
pp)

−1
11 − (CN

pp)
−1
22

]
∼ O(q). (E6)

In the limit q → 0, therefore, the matrix (CN
pp)

−1, qua a linear operator in momentum-space, splits into a block matrix

in the basis (p,P,p3, . . . ,pN ), with one block for p and another for P,p3, . . . ,pN . Hence its inverse CN
pp is also a

block matrix in this basis. Concretely,

CN
pp =

 (CN
pp)11 + (CN

pp)22 − (CN
pp)12 − (CN

pp)21 0 (CN
pp)1n − (CN

pp)2n

0 (CN
pp)11 + (CN

pp)22 + (CN
pp)12 + (CN

pp)21 (CN
pp)1n + (CN

pp)2n
(CN

pp)1n − (CN
pp)2n (CN

pp)1n + (CN
pp)2n (CN

pp)nm

 . (E7)

The matrix Σ−1 is the top-left block of (CN
pp)

−1, i.e.

Σ =
[
(CN

pp)11 + (CN
pp)22 − (CN

pp)12 − (CN
pp)21

]
−
[
(CN

pp)1n − (CN
pp)2n

]
(CN

pp)
−1
nm

[
(CN

pp)1m − (CN
pp)2m

]
(E8)

This, in conjunction with results on the initial correlation sub-matrix of CN
pp pertaining to particles 1 and 2 [33, 56, 64]

to the effect that when vth = 0, (CN
pp)11 + (CN

pp)22 − (CN
pp)12 − (CN

pp)21 ∼ O(q)2 (with the coefficient determined by

the cosmology, which we take to be standard ΛCDM), implies that indeed Σ ∼ Aq2 at small q. Besides

ak ∝ −
(
Σ−1

)
kn

[
(CN

pp)1n − (CN
pp)2n

]
(CN

pp)
−1
nmpm. (E9)

Additionally, the results of [33, §3.1.2], in conjunction with equation (E7), imply that the entire CN
pp matrix tends

to a constant as q → ∞, which means that Σ, a and B become O(1) in that limit, too.
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